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Preface

Let us start by considering a finite set of operators a,, called annihilation operators,
and af, called creation operators, indexed by x in the finite set X. They have the
commutation relations, for x, y € X,

[“x’“;r] =0dxy

[ax,ay] = [aj,a;] =0.
First we realize these operators in a purely algebraic way. We define them as gen-
erators of a complex associative algebra with the above commutation relations as
defining relations. We denote this algebra by 20(X). It is a special form of a Weyl
algebra. A normal ordered monomial of the ay, aj, x € X is what we call a mono-
mial of the form

+ +
Ay w oGy, Ay -y,

The normal ordered monomials form a basis of 20(X). This means any element of
20 (X) can be represented in a unique way according to the formula

. + +
E K, .oy Xms y1, ...,yn)ax1 ceay Ay e dy,,

where K is a function symmetric both in the x; and in the y;.
We can then move on to consider a continuous set of annihilation and creation

operators, e.g., dy, aj , x € R, with the commutation relations

[ax,a;r] =3(x —y)
[ac,ay] = [a+ a, ] =0

X

where 8 (x — y) is Dirac’s §-function. These operators are harder to define rigorously.
One possibility is to use the integrals

a(¢)=de¢(X)ax
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a+(1ﬂ)=/dx Y (x)ay,

where the arguments ¢ and i are square-integrable functions. Then the non-
vanishing commutation relations read

[a(e),a* ()] Z/dx PP (x).

Everything in this context can be well defined using what is called Fock space.
Another way to approach the problem was chosen by Obata [35]. He uses an
infinite system of nested Hilbert spaces, first defines a,, and then the adjoint a; in
the dual system.
In quantum field theory, one uses for operators the representation developed by
Berezin [8]

Zf---/dxl---dxmdy1-~-dyn1<m,n<x1,...,xm;yl,...,yn)

m,n

Xa;"'a;nayl.“a)’n’ (*)
where K, , might be quite irregular generalized functions. The multiplication of
these operators can be performed by using the commutation relations. Berezin pro-
vides for that purpose an attractive functional integral.

Another way to perform the multiplication of these operators is to define a con-
volution for the coefficients K, using the commutation relations formally, and then
to forget about the a, and a}" and work only with the convolution. This can be
done in a rigorous way. This is the theory of kernels introduced by Hans Maassen
[31] and continued by Paul-André Meyer [34]. These kernels are therefore called
Maassen-Meyer-kernels. The theory works for Lebesgue measurable kernels [41].

We now mention the usual way of defining a(¢) and a™ (¢). Denote by

R=(0) +R+R2+ ..

the space of all finite sequences of real numbers, where we use the + sign for union
of disjoint sets. Equip it with the measure

=1
N =f @+ Y [ [anan s,
n=1

where the function f(x, ..., x;) is supposed to be symmetric in the x;. The notation
€(1) is used because this is essentially the exponential of the Lebesgue measure .
Then Fock space is defined to be

LI(R,e),
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where the letter s stands for symmetric. If Lf(R”) = L(n) is the space of symmetric
Lebesgue square-integrable functions on R”, then

a(p):L(n+1) — L(n),

(a(w)f)(xl,...,xn>=/dxo¢<xo>f<xo,x1,...,x,»
and

at(p): L) — L(n+1),
(a™(9) f)(x0, X1, ... Xn)
=@(x0) f(x1, ..., xn) +@(x1) f (X0, X2, ..., Xp) + -+
+ @ (xn) f (X0, X1, - .oy Xp—1).

Thus a(¢) and a™ (¢) can be defined on the pre-Hilbert space

P L) c LZ(R.e0)).

n=0,f

where the suffix f means, that any element f = ( fo, f1,..., fu,...) has components
fn =0 for sufficiently large n.

This approach is based on the duality of the Hilbert space Lg(%, e(A)) with itself.
We use Bourbaki’s measure theory [10] and employ the duality between measures
and functions. The space R is locally compact when provided with the obvious
topology. Use the notation .Z;(R) for the space of symmetric measures and J#;(R)
for the space of symmetric continuous functions of compact support. We can now
define, for a measure v on R and a symmetric function f € JZ(R),

a(v) : Hs(R) — H(R),

(@) 7)) = [ ) fnr )
and for a continuous function ¢ with compact support in R

at(p) : H(R) > AR,
(@ (@) f)(x0. X1, ..., Xn)
= @(x0) f (X1, -+ Xn) + @(x1) f (X0, X2, -, X0) + -
+o(xn) f(x0, X1, ..., Xp—1)

which is essentially the same formula as above.
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By making use of the §-function we have raised both a conceptual and a semantic
problem. Denote the point measure at the point x by &, with

f £x(dy)e(y) = 9(x).

In the physical literature, the §-function can have three different meanings corre-
sponding to the different differentials with which it is combined:

d(x —y)dy = ex(dy)
d(x — y)dx =&y (dx)
§(x — y)dxdy = A(dx,dy),

where A is the measure on R? concentrated on the diagonal and given by

fA(dx,dy)go(x,y)=/dw(x,x}

We will use both types of notation: one is mathematically clearer, the other one is
often more convenient for calculations. In mathematics one very often uses §, for
the point measure ¢,. We tend to avoid this notation.

Now we can define easily

a(x) =a(ey) : H(R) > H(R),
(a(x)f)(xl,...,xn) = f(x,x1,...,%)-

The definition of the creation operator is more difficult. Consider the measure-
valued function

X — &

and define

at(dx) =a™ (e(dx)) : H(R) —> A (R),
(a™(dx) f)(x0, X1, ..., xp)
=€y (dX) f (X1, ..., Xp) + &x, (dX) f(x0, X2, ..., Xp) + -+
+ &y, (dx) f(x0, X15 - -+, Xn—1),

where the result is a sum of point measures on R. With the help of these operators
it is possible to establish a quantum white noise calculus.
We have the commutation relation

[a(x),a™ (dy)] =ec(dy).
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There is an important operator called the number operator informally given as
N = / dx at (x)a(x).
R

The differential of the number operator can be defined rigorously by
n(dx) =a™(dx)a(x),
n
(n(dx) ) (1) = D e (dX) £ (X1 ).
i=1
The normal ordered monomials have the form
Mlmn =M(s11"'1sl;t19"'9tm;ulv"'vul’l)
=a*(ds1)---at(dspat@dn)---at(@dip)at) - altm)a(ur) -
X a(uy)duy ---du,.
We define a measure on R> by
Mpimng = MUX1s « ey Xp5 STseves Sy oo ey Ty ULy ooy Uy Vs 5 Vg)
= (ma(xl)"'a(xp)dxl "'dxlemn(sla-nsSl;tla ce by UL, L, Uy)

a®(dy)---a"(dyy)|9).

Fix a Hilbert space ¢, and denote by B(f) the space of bounded operators on it.
Consider a Lebesgue locally integrable function

F = (Fimn)pmnend - 955 — B(®)
Flmn :Flmn(slv~~7sl;tl,--~,tm;ulv~-',un)
which is symmetric in the variables s;, f; and u;, and two functions f, g € Z;(R, ©),
=G, xp)
g:gq(ylr'”qu)-

We associate with F the sesquilinear form Z(F') given by

1
PO =Y s | ot £ Finn

where fT denotes the adjoint vector to f. This formula may look terrifying, but
it becomes more manageable by using multi-indices. It gives to Berezin’s formula
(x) above a rigorous mathematical meaning, and it has the big advantage that it is a
classical integral, so that we have all the tools of classical measure theory available.
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These considerations can easily be generalized from R to any locally compact
space X, and to an arbitrary measure A on X instead of the Lebesgue measure. We
will need that in Example 2 below.

The §-function, or equivalently the point measure &g, can be approximated by
measures continuous with respect to the Lebesgue measure. If ¢ > 0 is a continuous
function of compact support on R, with [ dx ¢(x) = 1, put

1
oo =2o(3)

9 (V) =g (x — ).

and

Then for ¢ | 0

@7 (0)dx = @ (x — y)dx — gy(dx) =8(x — y)dx
and

¢ (Mdy = @; (x — y)dy — ex(dy) = 8(x — y)dy.
Recall

at(p)= / p(x)a* (dx), a(e) = /dx P(x)a.
These were the operators defined above. We have
a+(g02f)dx — aT(dx), a(gaéf) — ay,
since
(a+((p2f)dxf)(xo, X1y ennsXn)

= (pc(x = x0) f (X1, ..., Xp) + -+ @ (x — x) f(x0, X1, ..., Xp—1))dx
- gxo(dx)f(xlv --~7xn) +"'+8xn(dx)f(x09xlv '-'7xn—1)s

and
(a((pzf)f)(xl,...,xn)=/dxo(p§(x0)f(xo,x1,...,xn)—>f(x,x1,...,xn).

In this context the operators a+(go2f) and a(cpz‘) are called coloured noise opera-
tors, and the transition ¢ | O is called, for historical reasons, the singular coupling
limit.

Without introducing any heavy apparatus we can treat four examples, where we
restrict ourselves to the zero-particle case and to the one-particle case, i.e. just to the
vacuum |#) and L(1) = L'(R, ), and do not need the whole Fock space.
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1. A two-level atom coupled to a heat bath of oscillators, or equivalently the
damped oscillator
We restrict to the one-excitation case: We have either all oscillators in the
ground state and the atom in the upper level, or one oscillator is in the first state
and the atom is in the lower state. In the rotating wave approximation the Hamil-
tonian can be reduced to

H= f wa® (do)a(@) + Eroa*t (@) + Ena(g),

0 0 0 1 1 0
1’501=<1 0>, E10=<0 0), Eu=<0 O)

and ¢ is a continuous function > 0, with compact support in R, and f dro(t) = 1.
We consider a™(¢) and a™ (@) as coloured noise operators, replace ¢ by @,
calculate the resolvent and perform the singular coupling limit. This means, in
frequency space, that ¢ approaches 1 and not §. Then the resolvent converges to
the resolvent of a one-parameter strongly continuous unitary group on the space

o= (oo ) ou0).

The one-parameter group can be calculated explicitly, then we obtain the Hamil-
tonian as a singular operator, and calculate the spectral decomposition of the
Hamiltonian explicitly.

After establishing a more general theory on the entire Fock space we recog-
nize the interaction representation V (¢) of the time-development operator in the
formal time representation as the restriction of Ué to $, where US’ is the solution
of the quantum stochastic differential equation (QSDE)

where

d,U! = —iv2x Egra™t (dt)U! —ivV2m E\gUla(t)dt — m Eqydt
with U = 1; so U is an operator on
L*(R,C%) D .

2. A two-level atom interacting with polarized radiation
This is very similar to the first example, but we have to consider not only the
frequency but also the direction and the polarization of the photons. So for the
photons we are concerned with the space

X=L*(RxS*x{1,2,3}),

where the first factor stands for the formal time (replacing the frequency via
Fourier transform), the second one for the direction and the third one for the
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polarization. We have added a fictional longitudinal polarization in order to make
the calculations easier. We provide X with the measure

(Mf):/fdtw%dn > fmi,
i=1,2,3

where dn is the surface element on the unit sphere such that

/ dn=4n
S2

and oy is the transition frequency. Define
X={W+X+X*+-
and consider
r=L*x,C?.
Denote by I1(n) the projector on the plane perpendicular to n,
H(n),'j = 5,'j —n;n;.

After some approximations we obtain the Hamiltonian

H= /dnwngn(n)i,,aﬂdw, n,i)a(w,n,l)

il

+fdnw(z)‘ﬂ(w)Zn(k)i,l(EIO(Iia(w,n» Ddw + Eq17;a™ (dw, n, 1))
il

where (g1, g2, q3) is a vector proportional to the dipole moment. We perform
the singular coupling limit via the resolvent, and arrive at a strongly continuous
unitary one-parameter group on

H= (C(é) ®(C|QJ)) o (C(‘l)) ® L*(X, A)).

We calculate the time evolution explicitly, calculate the Hamiltonian as a singular
operator and give its spectral decomposition. If V (¢) is the interaction represen-
tation of the time evolution in a formal time representation, then V (¢) turns out to
be the restriction of U! to $). Here U! is the solution of the differential equation

dU! = —iv2m /2 Zn(n),-l(Eo@a+(d(r, n),[)U;
ST

+ EoU!gia(t,n, wldndt) — wy E1 Uldt
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with
8qn 5
Y= ?|Q| .

This is a new type of QSDE and should be investigated further.
3. The Heisenberg equation of the amplified oscillator
In the coloured noise approximation the Hamiltonian reads

H:/wa+(da))a(a))+/b+a+(§0)+/ba((p)

where b and b are the usual oscillator operators with the non-vanishing com-
mutator [b, b*] = 1. Whereas the evolution corresponding to H is difficult and
will be treated in Chap. 9, the Heisenberg evolution is very easy. Define

H=Cbt @ la@): ¥ e L*®)},

then §) stays invariant under the mapping

A et pe1H1

Hence we obtain a one-parameter group on the space $). We perform the weak
coupling limit via the resolvent and obtain, similarly to the first example, that
evolution forms a strongly continuous one-parameter group on §). We identify
£ with the § of Example 1 and define E;; accordingly. Then the interaction
representation V (¢) of the evolution is the restriction to $) of the solution U! to
the QSDE

d Ul =iv2rwat (dt)Eo1U! —iv2m E\gUla(t)dt + m E\ Uldt.

We calculate the evolution on §) explicitly, determine the Hamiltonian and its
spectral decomposition. Whereas this example looks algebraically very similar
to the first one, it is analytically very different. The evolution is not unitary, but
it does leave invariant the hermitian form

(e, Nyl =112
The spectrum of the Hamiltonian consists of the real line and the points =ir.

4. The pure number process
‘We consider the coloured noise Hamiltonian

H=/wa+(dw)a(w)+a+(<p)a(<p)-

The one-particle space L(1) = L%(R) stays invariant. We calculate on this sub-
space the resolvent, and determine the weak coupling limit. We again compute
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the unitary one-parameter group, the Hamiltonian and its spectral decomposition.
The interaction representation is the restriction of the solution of the QSDE

ST AUl a().

dU; = 1 +in

After using coloured noise we establish a white noise theory. Then we attack the
general Hudson-Parthasarathy differential equation, i.e., the QSDE

dU! = Aya™(d0)U! + Apa™ (dt)Ula(t) + A_ Ula(t)dt + Bdt

with U{ = 1. The solution can be given as an infinite power series in normal or-
dered monomials. The coefficients A;, B are in B(£) for some Hilbert space £. If the
coefficients satisfy some well-known conditions, the evolution is unitary. We give
an explicit formula for the Hamiltonian. In Chap. 10 we show how this differential
equation can be approximated by coloured noise.

In order to treat the amplified oscillator we investigate the QSDE

1
dU! = —ia* ()b U! —ibU!a(r)dr — Ebbﬁ

This is an example of a QSDE with unbounded coefficients. For this we need the
white noise theory, and establish an infinite power series in normal ordered polyno-
mials. Using an algebraic theorem due to Wick, we sum the series and obtain an a
priori estimate. We prove unitarity, strong continuity and the Heisenberg evolution
of Example 3. With the help of the Heisenberg evolution we get estimates which
allow the calculation of the Hamiltonian.

I would like to express my sincere thanks to my good friend and colleague,
Patrick D.F. Ion. He spent weeks reading and discussing the present work with me,
finding a number of mathematical errors and providing good advice. Last but not
least, he improved my clumsy English as well as the LaTeX layout of the mathe-
matical formulae. This book could never have been completed without the untiring
help of Hartmut Krafft, a fellow citizen of our village, rescuing me on all computer
and LaTeX issues. I owe a great deal to the continuous moral support of my dear
friend Sigrun Stumpf.
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Chapter 1
Weyl Algebras

Abstract We define creation and annihilation operators as generators of an associa-
tive algebra with the commutation relations as defining relations. This is a special
case of a Weyl algebra. We discuss Weyl algebras, show that ordered monomials
form a basis, introduce multisets and their notation. The vacuum and the scalar
product are defined in a natural way. We prove an algebraic theorem due to Wick.

1.1 Definition of a Weyl Algebra

By an algebra we understand, if not stated otherwise, a complex associative alge-
bra with unit element denoted by 1. We will define the quantum mechanical mo-
mentum and position operators in an algebraic way following the ideas of Hermann
Weyl [45]. They are elements of a special Weyl algebra. Weyl algebras are defined as
quotients of a free algebra. The complex free algebra with indeterminates X;, i € I,
is the associative algebra of all noncommutative polynomials in the X;. So, for in-
stance, X1 X» # X»X. The algebra is denoted by § = C(X;,i € I). A basis for it is
the collection of monomials or words W formed out of X;, i € 1

W=X - Xi,Xi.

Assume given a skew-symmetric matrix H = (H;;); jes, and divide the algebra
C(X;,i € I) by the ideal generated by the elements

X,'Xj—XjX,'—H,'j, i,jel.

The resulting algebra is generated by the canonical images x;, i € I, and has the
relations

XiXj — XjXi =H,‘j.

It is called the Weyl algebra generated by the x; with the defining relations x;x; —
xjx; = Hj;.

The canonical commutation relations provide the best known example: the quan-
tities p; and ¢;, with i =1, ..., n, generate a Weyl algebra with the defining rela-

W. von Waldenfels, A Measure Theoretical Approach to Quantum Stochastic Processes, 1
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© Springer-Verlag Berlin Heidelberg 2014
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2 1 Weyl Algebras

tions
piqj —qjpi = —idij,
pipj — PiPi=qiq; —q;q; =0.

1.2 The Algebraic Tensor Product

We introduce the tensor product in a coordinate-free way, following Bourbaki [12].
Assume we have n vector spaces Vi, ..., V,, and consider the space C of formal
linear combinations of the n-tuples

xX1,...,xp) €V X - x V.

Then define the subspace D C C generated by

(X1 ooy Xic 15 X+ Yis Xip 15 -y Xn)
= (X1, e X Xy Xig s e Xn) — (X1, oo, Xi— 1, Yis XigLs -+ 25 Xn),
(x],...,xl'_l,C.xl‘,.xl‘+1,...,xn)_C(xl,...,X[_l,Xi,Xi+1,...,xn)

fori=1,...,n; x;,y; € Vi; ceC.
The tensor product is the quotient C/D,

n
C/D=Vi® & Vi=QR)Vi.
i=1
The canonical image of (x, ..., x,) is written
X1 Q- ®xp.
Definition 1.2.1 A mapping
F:Vix---xV,—> U,

where U is a vector space, is called multilinear, if

F(X1, .00, Xi—1, X + Yiy Xig1s 0y Xn)
=FX1, 0 Xic 1, X X1y oo X)) F F 01, o X1, Yis Xigds -5 Xn),
F(.xl,...,.Xi_l,CXi,X[+1,...,.xn)ZCF()CI,...,.xl'_l,xl‘,xl‘_l,.l,...,xn)

fori=1,...,n; x;,y;,in V;; ceC.

A direct consequence of the definition of the tensor product is the following
proposition.
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Proposition 1.2.1 One has
o The mapping

X, X)) EVIX X VX1 ®--Qx, €VIQ--Q V),

is multilinear.
o If
F:Vix---xV,->U

is a multilinear mapping into a complex vector space U , then there exists a unique
linear mapping

F:Vi®--QV,—>U
such that

Fri®- @x,) = Fx1,....%).
For completeness we prove the following proposition.

Proposition 1.2.2 Assume that B; C V; is a basis for each Vi, i =1,...,n. Then
the set
(b1 ® - ®b,:b € B;}
forms a basis of V1 ® --- Q V.
Proof ltisclear, thatthe b; @ --- ® by,, b; € B;, generate V| ® - - - ® V,,. We have to

show that they are independent. Recall the space C of formal linear combinations of
the (x1, ..., x,), and consider the subspace U spanned by the (b1, ..., by,), b; € B;.

If x; € V;, then
n:i}@m
beB;

where x; (b) is the component of x; along b € B. Recall that only finitely many x; (b)
are not equal to 0. The mapping

F:Vix---xV,—»>U

Ot xa) > > x1(brig) e Xn(ba g, )ik s - bk,
kla“'vkn

with b; i, € B;, is multilinear. Hence there exists a unique linear mapping
F:Vi@ - @Vy—>U
with

Fx1® - ®xy) = F(x1, ..., X).
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In particular,
Fbiy ®---®bug,) = b1y buk,)-
As the elements on the right-hand side are independent, the tensor products

b1y ® - Qbui,)

have to be independent too. g

If 20 is an algebra, the multiplication mapping
m:fRgeUARA— fged

is bilinear, and hence well defined.
Assume we have n algebras, and define a product in their tensor product in the
following way:
(/1@ ®fM)BE® - ®g)e@® - AN Q- @A)
P (1®g)® - Q([u®g) e RAN® - @ (R, ®Uy)
> mi(fi®g1)® - @mu(fy®gn) €A1 ® - @ Ap.

So finally

(f1® @)1 ® - ®8n)=[f181® - ® fugn-
We imbed 2; into ), ; by putting

u]:9113f1'—>u1(f1)=f1®1®"'®1€®%

1

un:mn9fn'_>un(fn):1®"'®1®fn€®Qli-

1

The images u;(f;) commute for different i. Conversely we have the following
proposition [12].

Proposition 1.2.3 If 2 is an algebra and 2; are subalgebras, commuting for dif-
ferent i, then U is isomorphic to Q); ;. We write

A= (XA,
i

Proposition 1.2.4 [f 27 is the Weyl algebra generated by x1, ..., x,, with defining
relations [x;, x;] = H; j (where [x;, x;] denotes the commutator as usual), and H
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is the direct sum of a p x p submatrix Hy and (n — p) x (n — p) submatrix H, so
_(Hy 0
H= ( 0 Hz) ’

W=, @ Ws,

then

where 201 is the Weyl algebra generated by x1, ..., x, with the defining relations
[xi, x;] = (H1)ij, and 205 is the Weyl algebra generated by xp41, ..., X, with the
defining relations [x;, x;] = (Ha);;.

For the proof consider that groups of generators xi,...,x, and Xp41,..., X,
commute, hence the algebras generated by them commute, and we apply the Propo-
sition 1.2.3.

1.3 Wick’s Theorem

We cite a well-known theorem in quantum field theory from Jauch-Rohrlich’s
book [27].

Assume given two linearly ordered sets A and B, a ring 2, and a function f :
A x B — 2. Define

Cla, o', B) = [f (@ B), f(e, B)](Hfer > o'} —1{p > B'}),

where [, ] denotes the commutator as usual, and 1{o > o’} has the value 1 when
a > o' and 0 otherwise. Consider a finite family («;, B;)ics, a; € A, B; € B and
fi = f(ai, Bi). Assume, e.g., [ =[1, n], then the sequence

(fins-os fiy)
is called A -ordered if o;, > - - - > «;,, and the sequence
(Fjur s Sir)

is called B-ordered if B, > --- > Bj,. Assume

o [[fi. fil. fil=0
[ [fi,fj]ZOifOl,' =Qaj OI',Bi =,3j.

Then the A-product
A(fi-- ) =0af1- fu:=fi, - fiy

is independent of the choice of the order of the sequence fi,..., f;;. So the ele-
ments f; can supposed to commute on the right side of Q4 and the A-product is
commutative. A similar assertion holds for the B-product.
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Denote by B(n) the set of partitions of [1, n] into singletons and pairs. So p €
B (n) is of the form

p={{t) o (0 A1) s (s S )
Define
B(p)=BW; f1.---s fu) =Bt fi)Crisy -+ Crpsm
with
Crs = Clay, Br; s, Bs) = Cyy.
Then we have
Theorem 1.3.1

Oafi--fu= Y B®: fi,.... fu).
peP®)

We start with a lemma.
Lemma 1.3.1 Assume given n elements in 2l indexed by «;, Bi,
gi=g(ai,B) e, iell,n]
and assume B, > --- > By, and that there is an element h = h(a, B) € A such that

a > o, i €[1,n] and furthermore [[h, g1, g;]1 =0, and if « = ; then [h, g;]=0.
We have

hB(gl~--gn>=B(hg1---gn)+ZC(a,ﬁ;a,~,/3i>B< [1 gj). (+)
i=1 jell,n\{i}

Proof Assume B <pB;, i=n,...,kand 8> B;, i=k—1,...,1. Then

hB(g1---gn)=hgn---81=8n" - gkhgk—1---8 +[h,gn--8klgk—1"-- &1

n
=gu--gchgi1 g1+ Y [ gilgn  Qit18i1 gkGh—1 """ &1
i=k

[h, gill{a =a;} =0
we have for i € [k, n]
(7, gi) = [h, g1 < Bi} = [h, il (Mo > i} — 1{B > Bi}) = C(a, B; i, B).
Fori € [1, k — 1], one has anyway

C(a, B ai, i) =0. O
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With the lemma in hand, we finish the proof of the theorem.

Proof We prove the theorem by induction from n — 1 to n. For n = 1 the theorem is
clear. Assume it for n — 1. Define a mapping ¢ : ‘B(n) — P(n — 1) by erasing the
letter n. Assume again

p= {0, 0 1 s1hs e U s )
Then

_ {{t2},...,{t[},{r1,S1},...,{rm,Sm}} fortlzn’
{{sih e}, .. Aud Aro, 2} oo A, sm}) - forrp =n.

Assume now, with different / and m such thatl +2m =n — 1,
qePr—D={{n}.... () ri.s1)s oo {rms sm}}-
Then
o @={n"p"...0)

is a set of [ 4 1 partitions of [1, n] with

i {{n},{f]},...,{t[},{rl,Sl},...,{rm,Sm}} fori:O,
{{t]}v"'v{ti*1}7{ti+1}’ e {tl}v{n’ti}’ {l’],S]},...,{rm,Sm}} fOI'i >0

Without loss of generality, we may assume that the f; are A-ordered. We have by
our hypothesis of induction

Alfu- )= FAGnr fO=Ffa D B@ fiseees fuo1)-
qeP(n—1)

Now

an(Q) = an(ftl "'ftz)crl,ﬂ "'CrnuSl

1
= (B(fn, ftl’ ~~~vft1)+ZB(fll "'flif]ft,url "'ftil)c(n’li))

i=1
X Crlssl e Crmw"l

= Y BG:ififu)

pep~(q)
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using our lemma (). Finally

Alfa- )= D FuB@ fi . fa1)

qePn—-1
= > D BWifif)= Y B i, f)
qeP(n—1) pep=1(q) peP(n) 0

Now consider a Weyl algebra 20 generated by the elements x;, i € I, with the
defining relations [x;, x ;] = H;, j. Assume given a linearly ordered set I" and a map-
ping y : I — I" with the property that H; ; = 0 for y (i) = y(j). Then a mono-
mial W = x;, ---x;, can be I"-ordered. Denote the I"-ordering by O (W). We use
Wick’s theorem in order to calculate O (W). The A-ordering of our formulation
of Wick’s theorem is the natural ordering of factors in W, the B-ordering is the
I'-ordering. Then

Crs =[xy xi J(Ur > 53 = 1y () > v (i)
Define, for p € P(n) with
p = {{tl}v cet {tl}! {r1,51}, ] {rmvsm}}s

the expression

LWJP :@F(fn "'ftl)CrI,S| "'Crm,xm-

Theorem 1.3.2
Or(W)y= Y Wl
peP®)
Proof This is a corollary of the last theorem in the notation just discussed. g

1.4 Basis of a Weyl Algebra

Assume the index set I to be totally ordered. We want to show, that the ordered
monomials make up a basis for the Weyl algebra 2 generated by x;, i € I, with the
defining relations [x;, x;] = H; ;. By the last theorem, it is clear that they generate
the Weyl algebra. We have to prove their independence. This problem is related to
the Poincaré-Birkhoff-Witt Theorem and we shall borrow some ideas from Bour-
baki’s proof of that [13].

We begin with the special case of H = 0. The Weyl algebra is then the algebra
R =Clx;, i € I] of commutative polynomials, with complex coefficients, in the
indeterminates x;, i € 1.
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We shall use the following notation: if A : [1, k] — [ is a mapping, then

XA =XA(k) " XA

so A may be called the ordering map for the monomial X 4.
Proposition 1.4.1 The ordered monomials form a basis of R = Clx;, i € I].

Proof If W is a monomial in the free algebra § = C(X;,i € I) with W = X, =
Xa@) -+ Xa@) and o € Sy, the symmetric group on k elements, then define

oW = XA(G*'(k)) T XA(U*I(I)) = XAoa*1

and

1
sW:E Z oW;

UEGk

thus a mapping s : § — § is defined.
The algebra £ is defined as the quotient §/J, where J is the ideal generated by
the X;X; — X; X ;. An element of J is a linear combination of elements of the form

W(X;Xi = Xi X)W = Xaw - Xag+1)(XjXi — Xi X)) Xaq-2) - Xaq)
=1 =) Xaw - Xag+) X XiXag-2) - Xaw,

where T = (I — 1, /) denotes the operator interchanging the indeterminates in places
[ —1and!/. As st =s we have

s(WX;Xi —XiX;))W') =0

and s vanishes on J.
We want to prove, that Y _ ¢;x4, = 0 implies ¢; = 0 for finite sums, if the A; are
different ordering maps A; : [1, k] — I. This means

ZC,‘XAI. e

and

> cis(Xa,) =0.

As the words for different A; on the left-hand side are different, the ¢; must van-
ish. O

Theorem 1.4.1 [f 20 is a Weyl algebra generated by x1, ..., x,, with defining re-
lations x;xj — x jx; = H; ;, then the ordered monomials form a basis of 20.
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Proof We define the commutative polynomial algebra 8 = C[zy, ..., z,] with inde-
terminates 21, ..., z, and denote by L(R) the algebra of linear maps £ — K. Set

0
mie L mi(f)=zfi  di(f)= ZHi,la_fl_
i<l

Then
[mi +di,mj+djl=I[di,m;]—[dj,mil=Hj jlic; — Hjilj<i = Hj ;
since H; j = —Hj; and H; ; = 0. Here

1 fori<j,

1' ;=
= 0 fori £ j.

We use this kind of notation often. Define a homomorphism 7 : § — L(K) by
n(X;) = m; + d;. This means that in any polynomial we have to replace X; by
mi+di . I Xa=Xaw - Xaq), with A(k) > --- > A(1), is an ordered monomial,
then

N(Xa)A) = maw +daw) - maqy +daa))(1)
=(maw---ma))(D) =zaw - 2401) =24-

The algebra 20 = §/J, where J is the ideal generated by [X;, X ;] — H; ;. Itis clear,
that 1 vanishes on J. Assume X 4, to be ordered monomials, with ordering maps A;
as above, and ) cixa, =01in 20,50 Y ¢; X4, € Jin §. Then

0= U(ZCiXAi)(l) = ZCiZAw

hence ¢; = 0, as the ordered monomials form a basis in K. O

1.5 Gaussian Functionals

If Q is a complex n x n-matrix, we define the linear functional yg : § =
C{X1,...,X,) — C in the following way. If k = 2m is even, we define the set
B of partitions of [1, k] into pairs; we will always write the pairs with the first
component greater than the second:

Bop={p1.....0om}, pi=i,8), ri >s;.
Put yo(1) =1,and A : [1, k] — [1, n] with k =2m, and define

LXAJp = l_[ Q(A(]Ji)), with

i=1
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O(A(pi) = O(A(ri), A(sy)) for p; = (ri, i), ri > si.
Then, for A : [1, k] — [1, n], we define the Gaussian functional

fork=2m+1,

vo(Xa) =
0 Y peplXaly fork=2m.

Proposition 1.5.1 The functional yg vanishes on the ideal generated by the poly-
nomials

XiX;i—X;X; —(Qi,j — Qji)
Proof Consider a monomial, and a specific [ € [1, k],
W=Xx=Xaw - XaernXanXae-nXaa-2) - Xaw
and divide the set 3, for the given [, into the subsets
Moy={peP:AI-1)ep}, M={peP:p.pep}

where p. = (r,]) resp. p, = (I, r),if r >l orr <1, and p} = (s,] — 1) resp. p =
(I —1,s). Then when we define

Wo=Xaw - Xag+nXaq-2) - Xam
we have
yo(W) = Q(AWM), Al — 1))y (W)

+ > oener) Y. 1 ew.

rsglll—1},r#s pPEM;s gep\{p,,p7}
Now consider
W'=Xy=Xaw  Xae+nXac-nXaw Xaa-2) - Xaq-
Then p,. and p? exchange roles, and we obtain
Yo(W) —yo(W') =(Q(AD), Al — 1) — Q(AU = 1), A()) yo(Wo).

From there one obtains the result immediately. g
Corollary 1.5.1 Consider the Weyl algebra 13 with defining relations
[xi,xjl1=Qij— Qji

and let k : § — 20 be the canonical homomorphism; then there exists a well defined
mapping Yo : W — Cwith yg =yg ok.
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Example Consider a Weyl algebra 20 with defining relations [x;, x;] = H; ;, and
define a linear mapping by taking the coefficient of the unit in the basis of ordered
monomials, cf. Theorem 1.4.1, then by Theorem 1.3.2, under this mapping

xar Y 0p)
peP
with
Qi,j=Hi jli<j.

1.6 Multisets

Let us recall some basic notions. If X is a set, a list of n elements of X is typically

written, with x; € X,i =1,2,...,n, as an n-tuple
(x17'~'7xn)'
It can be defined as a mapping from the interval [1,n] = (1, 2, ..., n) of the natural

numbers into X. We may write

(X15 -0y Xn) = X[1,n]-
More generally, if A = (aj,...,a,) is an ordered set, and x is seen as a map from
A to some target space,

XA = Xaqs -5 Xay)-

The ordinary set defined by x4 is the set
{xqg:a € A}
We shall use the notion of multisets. A multiset based on a set X is a mapping
m: X—->N={0,1,2,3,...}.

The cardinality of m is fm = |[m| =), _y m(x), showing different notations for the
same cardinality. The set of multisets is N%, the set of all mappings X — N. It forms
an additive monoid. A multiset is finite if its cardinality is finite. The commutative,
ordered monoid of all finite multisets is denoted 91(X), and its ordered monoid
structure comes from defining

(mp +mp)(x) =m(x) +ma(x)

and

m <mpy <= m(x) <my(x) forallx e X.
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We denote by 1, the multiset m(y) = 8,,y, and obtain

m= Zm(x)lx.

xeX

We associate to a sequence x = (x1, ..., X,) the multiset
n
xX*=01,..., %) =kKx =le,..
i=1

So « is the map that associates to a sequence its multiset. If x = x1 ) = (x1, ..., X)
is a sequence and o is a permutation, then

oX = (.xo.—l(l), N ,ngl(n)).

If x and x’ are two sequences, then there exists a permutation o with x’ = o x if and
only if kx = kx’.

If m=(x1,...,x,)®, then m(y) is the number of times that y occurs in the se-
quence (x1, ..., X,), so m(y) is also known as the multiplicity of y in x*. Hence the
number of sequences defining the same multiset is

|
#(kc " (m)) = '2—1

with
m! = l_[ m(x)!.
xeX

We denote by X the set of all finite sequences of elements of X
X={+X+X> 4.

We use the plus sign to denote the union of disjoint sets. A function f : X — C is
called symmetric if for x € X" we have f(ox) = f(x) for all permutations o. If
f is a symmetric function and 21, (X) is the set of multisets of cardinality n, then
there exists a unique function f 9, (X) — Csuchthat f = fok.

Assume that X is finite and that f vanishes on X" for sufficiently big n; then we
have the formula

1 1 -
Z(#x)!f(x)= > S,

xeX meMmXx)
If

az{al’..,’an}’

is a set without a prescribed ordering, we define X¢ as the set of all mappings
Xo 1@ — X. Supplement « with an ordering w so that then the pair (o, w) is given,
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e.g., by the sequence

(a,w) = (ay,...,ay).

If ' is another ordering, then

(. 0')=(a},....ap),

where (af, ..., a,) is a permutation of (ay, ..., a,). The mapping x, is represented
in the order w by the sequence

(Xays oo s Xay)-

The multiset
x& = (Xay»-- - xa,l). = lefli
i

is independent of the ordering of o and hence is well defined. If f : X* — C is a
symmetric function, then f(xy) = f((xq,,...,Xq,)) is well defined, regardless of
the ordering of «. If 8 C «, and x,, is given, then we use the notation for restriction
xXg=Xq | Band xo\g =xo [ (@ \ B). If x4 € X¥ and xg € XP are given, and o and
B are disjoint, then there exists a unique xq15 € X @+f  such that x, and xp are the
restrictions of xq+ g, and we have
Xgip =Xq T X5
If x3 = (x4, ..., %q,)* and xg = (xp,, ..., Xp,,)°, then

. o
xa+/3 :(xala"‘a'xanaxblv‘”axbm) )

regardless of the orderings chosen in «, 8, and « + S.
If X is finite and f : X" — C is symmetric, and also « has n elements then

Y@= fed)= > f@aoXe)= Y. —f(m)
xexr Xa €XY (Xay s+ Xap) meMn,

Assume f : X — C is a symmetric function, such that f vanishes on X" for n
sufficiently large, and there is a sequence o = (ag, o1, ¢z, ...) of finite sets with
#a,, = n. Then

Z Zf(x)—z Y fea)= ) —f(m)
n= 0 T xeXxn n= 0 " Xgy €XOn mefm(X)

We write for short

Zni Y= Zf(xama

xeX"
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with
1
Ao = —.
#o!
Assume, for example,
ag =10,
ap = {1},
oy ={1,2},
az={1,2,3},
and
Xy = Vj!
-xOll :xlv
Xoy = (-xlsXZ)v
Xoy = (X1, X2, X3),
Then

1
D) Aa=F@)+ Y f)+ 5 Y fGxrx)

X1,X2

1
3 D fx,xs) e

" X1,X2,X3

If C[X] is a free commutative polynomial algebra generated by the elements
x € X, we set

so that

XaXg = Xa+8-
If 0, = d/(dxp), then
OxgXe = 25 (X0, Xc)Xa\cs
ceo

where § is Kronecker’s symbol and « \ ¢ stands for « \ {c}.
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1.7 Finite Sets of Creation and Annihilation Operators

Assume X to be a finite set and consider the Weyl algebra 20(X) generated by
Ay, a;r for all x € X, with the defining relations

[ax,a;»]:(gx’y’ [ax,ay]z[a;,a;]zO

for x, y € X. This implies, that the a, commute with each other and so do the a;'.
Using Proposition 1.2.4 we obtain

W(X) = Q) W(ax. ar).

xeX

where 20 (a,, a;") is the subalgebra generated by ay, a;c“. The elements a, are called
annihilation operators, the elements a; creation operators.
In 20(X) we define the anti-isomorphism given by

ay > ay, at e (af) =a,.

Consider a monomial

_ U 241
M_ax:...a)q

with ©¥; = %1 and

s Jab ford =+1,
T a, ford =-—1.

Then

L -9
MT=a; " a;?n.

A monomial is called normal ordered, if the creators precede the annihilators,
i.e., if the monomial is of the form

at +

Xm ”axlay" a .ayl'

Proposition 1.7.1 The normal ordered monomials form a basis of 20(X).

Proof In order to apply Theorem 1.4.1, we order the generators of 20(X). We as-
sume that X has N elements, order the elements of X and define & = a;"’_ and
§N+i=axif01‘i=1,...,N. O

Consider a monomial

_ P o)
M=ayg) --a)-
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As the a, commute and the a; commute among themselves, normal ordering is
defined, see Sect. 1.3, and

M:=0,M = l_[ a;i) l_[ ax(i)-
i (i)=+1 i (i)=—1
Denote by P(n) the set of partitions of [1,n] into singletons {z;} and pairs

{rj,sj},rj > s;.So we have a typical partition

p={{n)..... ) {riosih o P s}

A direct consequence of Wick’s theorem, Theorem 1.3.2, is
Proposition 1.7.2 (Wick’s theorem) Define

4
My =)y - al:Cr, 1) Clrms 5m)

with

1 forx(r)=x(s),0(r)=—1,0(s) =+1,

C(r,s) =
) 0 otherwise.

Then

M=Y"|M],.
peP

If m € M(X) is a multiset, m =m 1, +--- +myly,, then

(a+)m _ (a;)ml o (a;c:)rnk’ a™ = (ax] )m1 . (an)mk.

The general form of a normally ordered monomial is
( a+)m1 amz ,

with my, mp € M(X).

We want to define the ‘right vacuum’ @. It is characterized by the property that
ay® =0 for all x € X. We define the left ideal J; C 20(X) generated by the ele-
ments d,, x € X. A normal ordered monomial is in J; if it is of the form (™)™ a™
with m’ # 0. These elements form a basis of J;. The quotient space 23(X)/J; has
the basis (™)™ + J;, where m runs through all multisets in 9)1(X). Denote the zero
element 0 4+ J; of 20(X)/J; by 0, and call

O=1+7,

then

a,®=7;,=0.
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This is a natural algebraic definition of @. We have
(a+)m +3 = (a+)md§.

The quotient space 20(X)/J; is a W (X) left module. The action of 25(X) on
20(X)/7J; is denoted by T;.

feWX) = Ti(f) - W(X)/Ty — W(X)/T1,
Ti(f)(g+T)=fg+T.

As Ti(fg) =T;(f)Ti(g), the mapping 7; is a homomorphism.
Use Dirac’s notation (a™)™@ = |m), then @ = |0) and

afim)=m+1L),  adm)=) & m—1)

yeX
fleIM(X), then
o) = ™ — 1,
a
(m — D!
recalling m! =[], .y m(x)!. So a'|m) # 0 iff m > [. Especially
a™m) =m!®.

In an analogous way we define the left vacuum ¥. Consider the right ideal J,
generated by the a;f, x € X. The elements of the form (a*)™ a™ with m # 0 form
a basis of J,. The quotient space 20(X)/J, has the basis a™ + J,, where m runs
through all multisets in 2T(X). The quotient space 2J(X) /T, is a 2 (X) right mod-
ule under the action 7,

feWX) = T(f) : W(X) /T, — W(X) /Ty,

Tr(f)(g + jr) = gf + jr-
As T, (fg) =T, ()T, (f), the mapping T; is an anti-homorphism. Use the notation
Y =1+73,, then

a4+ 3, =va™
Again use Dirac’s notation ¥a™ = (m| and ¥ = (0|. Then
= (0la] =
(mlay = (m+ 1],

(mlaf = "8 y(m— 1],

yeX
|

(m|(a+)‘=ﬁ<m—u.
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Proposition 1.7.3 The mapping f € 20(X) — T;(f) € L(2V(X)/3T1), the space of
linear mappings of 20(X)/J; into itself, is a faithful homomorphism. Similarly, the
mapping f € W(X) — T.(f) € LU(X)/T;) is a faithful anti-homomorphism.

Proof We have to show, that 7;(f) = 0= f = 0. Assume f = c(m, m’)(@ah)™
a™ 0, and choose m’ = max{|m’| : ¢(m, m’) = 0}. This number exists, as the sum
is finite. Choose m, with |mg| =m’ and c¢(m, m) # 0 for some m. If c(m, m’) # 0,
then |m’| <m’ and am,|m6) = m{)!&m/’mé)lO) and, furthermore,

0="Ti(f)|mg)= Zmo'c (m, mg) ( Zm le(m, mg)|m).

As the |m) are linear independent, all c(m, m’o) = 0. This is a contradiction. That T}
is faithful can be proven in an analogous way. O

We consider the vector space
Q0/30)/3r = Q0/3,) /31 =2/ +3).
It is one-dimensional and has the basis
1+3;+737,.

Denote by (f) the coefficient of 1 when f is expressed in the basis of normal or-
dered monomials. Then

f4+0+3,=(fA+T+3, =¥f.
We make the identification

(f)=wfP=(0[f]0).
If
M )1?: .. .a}lzll
is a monomial, then
(M) =(0|M|0)= )" [M],.
pePa

Here ‘3, is the set of pair partitions of [1, n]; if (r, s), r > s, is such a pair, then

Clr.s) = 1 forx, %xs, Y =—1,0;, =+1,
0 otherwise.

So
C(r,s)= (afr"a;zj).
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If n is odd, there exists no pair partition, and (M) = 0. If p = {(r1, 1),

with r; > s; is pair partition, then

M1, =[] Ci s

Using the anti-isomorphism M > MT we obtain
(M) =(MT).
Define the matrix
0((x.9). (. 9')) = {afa})
for x,x’ € X and ¥, 9’ = £1; then
(M) =yo(M),

where yo (M) is the Gaussian functional defined in Sect. 1.5.
We may write Wick’s theorem in the form

M=y ]‘[ﬂ< I ﬁ>
Ic(l,n] iel ie[1,n\I
Using the anti-isomorphism M — M, we obtain
ol =y,
(@H)™®)" = (Im))" = wa™ = (m.
The states |m) are orthogonal in the sense that
wa™ (@)™ @ = (mim') = mSy .

In physics, one classically uses instead of |m) the states

1 m
n(m) = ﬁ((ﬁ) ®.

They are orthonormal in that

<rl(m) |77(m/)> =0m,m'

1

Weyl Algebras

con (g2, Suy2))

Define the space £ (91(X)) of all functions, m € M(X) — f(m) € C which
vanish for |m| sufficiently large. Extend the form (m|m’) to a sesquilinear form on

J(M(X)). Consider the elements of the form

1
)= — fm)m)
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1 —
(F1 = —Fm)ml;
m
then
1_
(flg) = —Fmg(m).
m
Recall that X is the set of all finite sequences of elements of X
X={+X+X*+--

If & =(xq,...,x,) € X", then the multiset £®* =« & = Zﬁ:l 1,,. We set

g =ay, - Ay, = Ayt a?‘:a;nﬁ;:a:s,
&) = [k&), (&= (k&|.
We have
(a;)lxl, e Xp) =Y XL, e, Xp)
aylxla ey Xn) :(Sy,)q |x2, ...\ Xp) +5y,x2|xl7x3, s Xp)

_|_...+8y’xn|x1,.--,xn—l>'

We denote by 7 (X) the space of all symmetric functions X — C, which vanish
on X" for n sufficiently big. If f € J#;(X), then there exists a unique function
f e X (ON(X)) with f = f ox. We obtain

Z > r®l8),

TEexn

(flg) = (f13) = Zn,Zf@)g@)

Eexn
Proposition 1.7.4 For x € X define the mappings ay, a;l : #(X) — Hs(X) by
(axf)('x17"’7~xl’l)=f(~x5xla"‘9xn)
(ajf)(xl» e Xp) :8x,x1f(x27 R ) +8x,x2f(xlsx3a ces Xp)
+ - +5x,x,,f(xla .. ~,Xn—1)-
Then

@l =Y 3 F©ad) = lacf),

n=0 EeXn
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altlf) Z > f®atE) =|af f).
TEexn

Proof We have

1
axl )= — Yo FGr o xadxn, )

=) — Z FOr o x0) By 122, oo X)) oo Sy X0, oy Xnm1))

n

= Z fx,x2, 0, x0)|x2, o0y Xn) = lax f).

n!
For a, there is a similar calculation. O

We use the notation of Sect. 1.5. If « is a finite set and x, € X%, then

— . + _ +. -t
ay, = l_[axc, ay, = l_[axc, lxe) =a; .

CEX CEU
For ¢ ¢ o we have
a;lxa) = |Xg+c),

where we have used the shorthand o + ¢ = « + {c}. We obtain for x, € X

A |%a) =) 81, . [Xarp)

bea

upon writing o \ b for « \ {b}. If @ = (xp, o1, 2, ...) is a sequence of sets with
#a, = n, then, recalling Ao = 1/(#a)!, we have

=) (A) f (x¢)|Xa),
(f18) = _(Aa) f (xa) 8 (Xa)-

One obtains for an additional index ¢

(axc f)(xa) = f(xotJrc)
and for x, € X

(@f ) ) =D ey f (Kae)-

bea



1.7 Finite Sets of Creation and Annihilation Operators

If g : X — C is a function, then define

aig)=y gwa:  at(®) =) ga;.

xeX xeX

We obtain for f € 7;(X)

(@@ f)xa) =Y 8xe) f Kate),

xceX

(@™ (@) ) (xa) =Y 8(xe) f (xaro)-

CEU

One has also for the commutator

[a(g).a™ (h)] = (glh).

23



Chapter 2
Continuous Sets of Creation and Annihilation
Operators

Abstract We define first the operators a(¢) and a™ (@) on the usual Fock space.
Then we exhibit a generalization of the sum-integral lemma to measures. We intro-
duce creation and annihilation operators on locally compact spaces, and use these
notions to define creation and annihilation operators localized at points.

2.1 Creation and Annihilation Operators on Fock Space

There are many ways to generalize function spaces on finite sets to function spaces
on infinite sets. The usual way to generalize creation and annihilation operators
employs Hilbert and Fock spaces. Assume we have a measurable space X and a
measure A on X. We consider the Hilbert space L>(X, 1) and a sequence of Hilbert
spaces, forn=1,2, ...,

L(n)=L3(X",2%")

of symmetric square-integrable functions on X", with L(0) = C. The Fock space
for X is defined as

F(X,A):@L(n).

n=0

It is provided with the scalar product
oo
— 1 —
<f|g>x:ng0+Z;/x(dxl)mx(dxn)fn(xl,...,xn)gn(xl,...,xn)
n=1"""
and the norm
00 1 )
||f||2p=|fo|2+Z;/A(dxl)---x(dxn)|fn(xl,...,xn)|
n=1

for f = fo® f1® fo®--- with f, € L(n), and g accordingly. So f isin I, if only
and if || f||r < co. We define the subspace I, C I" of those f such that f, =0 for
n sufficiently large.

W. von Waldenfels, A Measure Theoretical Approach to Quantum Stochastic Processes, 25
Lecture Notes in Physics 878, DOI 10.1007/978-3-642-45082-2_2,
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Recall the definition of
X={0+X+X>+--

and provide X with the measure
R = 1
COIGENIURD S ECHIBRICERVACS)
n=1 "

‘We can make the identification
LI(X,&(0) =T'(X,A).

As the values of a function at a given point are generally not defined, we cannot
define a, and aj for a given x € X. But the definitions at the end of Sect. 1.7 can
be generalized. Define for f € L(n + 1) and g € L(1)

(a(g)f)(x1, .o Xp) =/A(dx0)§(xo)f(xo,x1, ceesXn)
andfor feL(n—1)

(@ @)@ x) = Y g f XLane)-

cell,n]
One obtains in the usual way
la@)| - < Vn+Tliglr I flr.
lat@ |- <vnlglrifir

with, of course,
2
el = / A(dx)]g()]".

The mappings a(g) and a™(g) can be extended to operators Ifn (X, 1) = Thin (X, A),
and one has

(fla(g)h)=(a*(g) fIh)

and the commutator

[a(f).at ()] = f MO F ()8 (0).

2.2 The Sum-Integral Lemma for Measures

In this work we will mainly use another way of generalizing the creation and anni-
hilation operators on finite sets. Instead of L>(X, A) we will deal with the pairs of
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spaces of measures and spaces of continuous functions on X. Contrary to the situ-
ation described in the last section, we can easily define white noise operators. We
have at our disposal the powerful tools of classical measure theory, and may use the
positivity of the commutation relations.

This paper is related to the theory of kernels, first used in quantum probability
by Maassen [31] and Meyer [34]. The theory of kernels, however, is well known in
quantum field theory. Quantum stochastic processes form, to some extent, a quan-
tum field theory in one space coordinate and one time coordinate. Our approach is
dual to that of Maassen and Meyer. We introduce the field operators directly and
work with them.

The sum-integral lemma is the basic tool of our analysis. It has been well known
for diffuse measures for a long time, i.e., for measures where the points have mea-
sure 0 [33]. Our lemma is much more general; it holds for all measures.

We shall employ Bourbaki’s measure theory. It is a theory of measures on locally
compact spaces. If S is a locally compact space, denote by .#(S) the space of
complex-valued continuous functions on S with compact support, and by .Z (S)
the space of complex measures on S. A complex measure is a linear functional
w: #(S) — C, such that for any compact K C S, there exists a constant Cg such
that [ (f)| < Ckx maxyes | f(x)] for all f € #(S) with support in K. As in other
measure theories the set of integrable functions can be extended from functions in
JE(S) to much more general functions. All the usual theorems, like the theorem of
Lebesgue, are valid. We shall use the vague convergence of measures, which is the
weak convergence over £ (S), i.e. u, — w if w,(f) — u(f) for all f € #(S).

In order to avoid unnecessary complications, we shall only consider locally com-
pact spaces which are countable at infinity, i.e., which are a union of countably many
compact subsets. Assume now that X is a locally compact space, provide X" with
the product topology, and the set

X={W+X+X*+-

with that topology where the X" are both open and closed, and where the restrictions
to X" coincide with the natural topology of X". Then X is locally compact as well,
any compact set is contained in a finite union of the X", and its intersections with
the X" are compact.

In our case, the space X mostly will be R. But we shall encounter R x S? and
generalizations of R.

If 1 is a complex measure on X, we write

M=o+ p1 +p2 A+
where 1, is the restriction of © to X”. We denote by ¥ the measure given by
v(H=r®).

Then wg is a multiple of ¥. If A = (A(1), ..., A(n)) is a totally ordered set, we use
the notation

n(dxa) = pn(dxaqy, ..., dxam)-
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A function f on X is called symmetric, if f(w) = f(ow) for all permutations
of w. If « is a set without prescribed order and f is symmetric, then f(xy) is well
defined. A measure on X" is symmetric, if for all f € JZ (X") and all permutations
o of [1,n], one has u(f) = u(of) with (o f)(w) = f(ocw) forall w € X". A mea-
sure on X is symmetric if all its restrictions to X" are symmetric. We then use the
notation p(dxy).

Like a function, a measure u has an absolute value |it|. A measure u is bounded,
if the measure of the total space with respect to |u] is finite.

IfweX, w=(xy,...,x,), then we set
1 1
A= — = —
#w! n!

Theorem 2.2.1 (Sum-integral lemma for measures) Let there be given a measure
u(dwy, ..., dwy)

on

B 3 KXk x

symmetric in each of the variables w;. Then
n= Z Mny,...,nx

where [Ly, .. n, IS the restriction of i to X" x --- x X"k Assume that

1

Awl--~Awku(dw1,~--»dwk)zzn!—
1!

| Mny,...,nk (dwy, ..., dwy)
. 'nk'

is a bounded measure on X*. Then

// Aw1~--Awk,u(dw1,...,dwk)=/ Aw v(dw)
xk X

where v is a measure on X, and Y (1/n!)v, is a bounded measure, in which v, is
the restriction of v to X" and

Vp(dxy, ..., dx,) = Z wap, . wp (dxg, ..., dxg),
Bit-+B=I[1,n]

where B1, ..., B are disjoint sets.

Proof

// Awq -+ Awyg p(dwy, ..., dwyg)
xk

1
= —— My (X -, dXg,)
1 ) X xm npleong!

Ny
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where the «; are the intervals

ap =[1,n1],

awry=[n+1Ln+nl, ..., a=[h+--m_+1ln+-+nl
Fixny,...,nx and putn =ny + - - - n. Then for the summand in the above formula
we have

where the sum runs over all permutations of n elements. The subsets o (¢;) = B;
have the property

Fix B, ..., Br with property (). There are exactly n1!---ny! permutations o such
that

O’(Oll')=,3i fori = 1,...,k.
Hence the last integral expression equals

nitee !
T'BZ ///‘Lnl ,,,,, nk(dxﬁl,...,dx/gk),
1

..... Bk

for the B; with (x). Hence

1
>y /.../Mnmnk(dxﬂl,...,dx,gk).
no By

,,,,, Br O

Remark 2.2.1 The proof is purely combinatorial. So analogous assertions hold in
similar situations.

We want to use the notation of Sect. 1.7. If « = {ay, ..., a,} is a set without a
prescribed order and p is a symmetric measure then

I'L(dxol) zﬂ(d-xap .- ~adxa,,)

is well defined. We have

/ p(dw) Aw = / j(dx) A = — / J(dx).
n X f’l' X
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For a sequence o = («g, ¢, .. .), with #a,, = n, of sets without prescribed ordering
we define for a symmetric measure © on X

1
/;Awu(dw)z;afxan m(dxg,)

and write it, for short, as

f Awp(dw) = / w(dxy) Ao = f w(dxy)Ac.
X X« 4
With this notation we want to reformulate the sum-integral lemma.
Theorem 2.2.2 (Variant of sum-integral lemma) Let o; = (@i, ®i.1,-..) be se-

quences of finite sets, with #a; , =n and ap,; Noyy j =0 for i # j, and B =
(Bo, B1, ...), with #8, = n and the B; disjoint from the o;, then define

w(dxg,, ..., dxg) = Mg, oy (dXg, ..o, dXg,).
We have
/ / Aotl~~-Aoeku(dxal,...,dxak):/Aﬂv(dxﬁ)
o ay B
with
v(dxg) = Z u(dxg,,...,dxg),
Bit++p=p
u(dxg,, ..., dxg,) = uug,, .. #p.(dxg,, ..., dxg.).

Remark 2.2.2 We introduced the notation
/ Awp(dw) = / A@)(dxy).
X o

Later we will often skip the A« completely and write for the last expression simply

/ pm(dxy)
/M(Ol)-

With this simplified notation the sum-integral lemma reads

[ [ nrtry = [P et
a o

Yo+ tay=a

and skipping the dx as well only
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or by neglecting the dx
/ [ M(Oél,.--,ak):f Z mlog, ..., o).
a] Ak ¥y top=a
If X=Rand
R={0}+R+R*+. -

and if X is the Lebesgue measure

fe()»)(dxa)f(xa)A(X:Z dxq---dxy f(x1,...,x).

X] < <Xp

In the theory of Maassen kernels [34] one defines

/dwf(w):Z/ oy - dxy f(X1, 0.0, X0),
n JxI<<xy

where w runs through all finite subsets of R. The mapping
(wi,...,00) > w1+ +wy

is defined where the w; are pairwise disjoint, i.e. Lebesgue almost everywhere. The
usual sum-integral lemma is

//dwlda)kf(a)l,,(z)k)=/dw Z f(w)

w1+ top=w

It can be easily derived from the sum-integral lemma for measures, as multisets with
multiple points have Lebesgue measure 0.

2.3 Creation and Annihilation Operators on Locally Compact
Spaces

We use the duality between measures and continuous functions of compact support.
We define creation and annihilation operators for symmetric functions and measures
on X. Assume given a function ¢ € # (X), a function f € JZ(X), the space of
symmetric continuous functions on X of compact support, a measure v € .Z(X),
and a measure p € .#;(X), the space of symmetric measures on X. We define

(a(v>f)<x1,...,xn>=fv(dxo)f<xo,x1,...,xn>
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or in another notation, where « 4+ ¢ = « + {c} means that the point c is added to the
set «, and similarly using o \ ¢ = « \ {c}, we can continue with

(a(v) ) (ra) = f B(dxe) f (Fare):

(@™ @) ) xa) =Y 0xe) f (xare)s

cea

(a® () xe) = Y v(dxe)pn(dra),

ceo
(@) @) = [ P,
If @ is the function defined by
D) =1, D(xy)=0 fora#0
then
a(w)® =0.
Similarly if ¥ is the measure defined by
V() =WIf)=1®),
then
a(p)¥ =0.
We have therefore
(U |D) =1.
We define the mapping
€ M (X)— u(®)
and use the notation for it
(@) =P (n) =(P|p).

One obtains

(W laa* (o)) = /X BN e() = (v]g)

(@la(p)a™ (@) = / v(d)g (D = (o)

X

and the commutation relations

[a(), a™(9)] =fV(dX)<ﬂ(X) = (v]g),
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[a(o).a* )] = [ vz = (o)
We define

(ulf) = fx Aw Ti(dw) f (w) = / Aa Ti(dxe) f (xe),

(flu) =l f)-

Proposition 2.3.1 We have

(@t ulf)={ulaw)f),
(at@)ul £) = (ula(e)™ f)

or

[ av @ omyan s = [ avma@w e s)w)

/ Aw (a(p)p)(dw) f(w) = f Aw T(dw) (@™ () f) (w).
Proof We prove only one of the equations by using the sum-integral lemma

/ﬁ AB(a* (v)12) (dxp) f (xp) = /ﬁ ABY V@ (@epo) f (xp).
cep

Introduce the sequence consisting of {c} alone, and the sequence o = (xg, o1, ...),
by putting o,—1 = B, \ ¢. In this way the integral becomes

| [ e @@ £ s = (o) 1), -

We define the exponential measures and functions

@ =0 +p+9P+. =" Vo,
eW) =W +v 402 4. = Oy,

So, fora ={ay, ..., a,},

e(@)(xa) = @(xq,) - - 0 (Xa,),
e(v)(dxy) = v(dxg,) - - - v(dxg,).
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2.4 Introduction of Point Measures

We consider the function
e:x € X ey € M(X), /ex(dy)w(y) = p(x).

So &y is the point measure at the point x € X.

Lemma 2.4.1 If i1 is a measure on X", then
/ &x; (dy)u(dxy, dxa, ..., dx,) = u(dy, dxz, ..., dx,),
x|

where the subscript variable x| on the integral indicates integration over the range
X of that variable.

Proof If ¢ € Z (X) then

// ‘p()’)gxl(dy)ﬂ(dxlade-~-»dxn):/ @(xp)p(dxy, dxa, ..., dx,)
y X1

X1

=/<p(y)u(dy,dxz, s dw). o
y

We can easily define the mapping

a(x) =a(ex) : H(X) »> A (X),

(a(x)f)(xl,...,xn)zf ex(dxo) f (x0, X1, ... xn) = f(x, X1, ..., Xpn).

X0

If u € A(X) then

at (e u(drg) =Y e (dr)p(dxac).

cexa

If v is a measure on X, then
a(v) = fﬂ(dx)a(x).

We will mostly use the symbol a™ (dx) for a mapping from #5(X) into the mea-
sures on X, which we will now introduce and explain.

If S is a locally compact space, u a measure on S, and f a Borel function, we
define the product fu by the formula

/(fu)(dsw(s} =f/t(dS)f(S)<p(S)
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for ¢ € #(S), and write

(fw)(ds) = (uf)(ds) = f(s)u(ds).

Let S and T be locally compact spaces. We consider a function f : § — .Z(T),
with target the space of measures on T'. It can be considered as a function

f:SxH(T)—C

and we write it

f=f(s,de).

We extend the notion of the creation operator to functions f = f(x,dy): X —
A (X), where using x indicates the variable and the dy reminds us that the value is
a measure, and define for g € JZ;(X)

(@t ()g) ar dy) =Y f(xe, dY)g(Kare)-

cea

We apply this notion to the function ¢ : x > &, and write

(a™(dy)g) (ra) = (a7 (£(dy)) ) (¥a) = D 2. (A1) 8 (Xar\o)-

cea

We may consider a™*(¢) as an operator-valued measure and write
a*(e)=a"(e)(dy).

If p € ' (X), i.e., ¢ has one variable, then
at(p)f = / a’ (dx)p(x).

‘We obtain the commutation relations

[a(ex), a(gy)] =0,
[a* (e)(dx), a* () (dy)] =0,
[aer), a™(e)(dy)] = ex(dy).

We extend this notion to any Borel function g : y € X > gy € J(X) and write
(@t (@)gy) (Xardy) =Y 1, (dy)gy (Xare)-
CEN

In this equation the product of the measure ¢, (dy) with the function g, appears.
A special case arises if gy, = a(ey) f.
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Proposition 2.4.1

(a*(©aley) f)(Xa, dy) =Y 6, (dY) f (xa)-

cea
Proof
(at(e)aley) f)(Xa, dy) =Y e (dy)(aley) ) are)
CEX
=Y e [@Y) f (Xare + () = D £, () £ (¥arre + {xc})
=) e (dy) f(xa)
CEn
as
e(x,dy)g(y) =e(x,dy)g(x). D
So

n(dy) =a (e)(dy)a(ey)

is the operator analogous to the number operator a; a, in the case of finitely many
x considered in Sect. 1.7.

We single out a positive measure A on X, and introduce in J#5(X) the positive
sesquilinear form considered already in Sect. 1.7,

(flghh= / Aa e(2)(dxo) f(xa)g () = (f e(W)lg) = (f1g e(h)),

using the product of a function with the measure
eM) =W +r+21%2 4.
More generally, if v is a measure on X, we have
(fla(g), =(a*me@) flg).
We introduced in Sect. 2.1 the operator a™ (¢). One obtains now
(@™ (@) flg), =(flalpr)g), .

So a(eX) corresponds to the operator a(g) introduced in Sect. 2.1.
If u is a symmetric measure on X, one has

(a(e)(dxe) ) (dxg) = p(dxge)

as

(a(s)(dy)u)(dxa)=/ ex, (dy) p(dxge) = p(dxy, dy).

Xe
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We can calculate
(la™ (edy)) f) = (a(e@y))nl £).
Proposition 2.4.2 For f, g € H#5(X)
(fla*(e(dy))g), =rd{a(e)) f1g),;
/v (fIn@dy)g), = (fINg)x

where N is the operator on the space of functions on X given by
(Nf)(x1, ..., Xp)=nf(xy,..., Xn).

Proof
(Fla* (e(dxe))g), = (a(e(dxe)) fe(M)lg) = / (e(W) f) (dxg+c)g(xa) Aler)

= A(dx) f f (ate) (€(0) (dxg) g (xe) Alet)
= A(dx)|axe) flg), -

Hence
(fla™(e(dy)g), = r@dy){a(e(y) flg), -
One obtains, from the definition of n
(fIn(dy)g), =(fla* (e(dy))a(ey)g), = A(dy)|aley) fla(ey)g),

and

/ Adyatey) flaey)g),
y

= (fINg). O

If V is a complex vector space with the scalar product (- |-), we may write | f)
for f € V, and (f| for the semilinear functional g = |g) — (f]g). If ¢ € C, then
(cf| =¢(f]. Given an operator A : V — V, we define the operator A" operating on
(f] to the left by

(f1AT = (Af].
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There might be, or there might not be, an operator At acting on |g) to the right with
AT= A% or (Aflg) = (fIATg) = (fIATg).

We apply this definition to (%) provided with the scalar product (- | -), and, as
a corollary of Proposition 2.4.2, we have

at (s(dy)) = aT(sy))L(dy).

We use Bourbaki’s terminology in denoting by ¢, the point measure at the point
x € X. We compare it to the §-function on R, as used in physical literature. The
8-function has three different meanings, depending on the differentials with which
it is multiplied:

§(x — y)dy = ex(dy),
5(x — y)dx = £y (d),
8(x — y)dxdy = A(dx, dy),
where
/A(dx, dy) f(x,y) Z/de(x,X)-
Recall

R={#}+R+R* +. -,

use for A the Lebesgue measure, treat the §-function formally as an ordinary func-
tion, and put §,(y) = §(x — y); then

(@t @) f)xa) =) 8(x = x0) f (o),

CEN
(@) f) () = / 0y 8Cre — 3) f ) = Gy,
‘We have, with this notation, the nice duality relation

(fla® (o)), = (a0 flg),-

For many calculations it is advantageous to work with the §-function. In doing so
there is no difference between at and a”. But the author hopes that the mathematics
has become clearer through the use of the e-measures.

In some calculations we use the terminology of Laurent Schwartz and write

go(dx) =d8(x)dx.



Chapter 3
One-Parameter Groups

Abstract In the first section, starting from the resolvent equation we study strongly
continuous one-parameter groups, their resolvents and their generators. In the sec-
ond section, we introduce the spectral Schwartz distribution.

3.1 Resolvent and Generator

We follow, for quite a while, the book of Hille and Phillips [24]. Assume we have a
Banach space V. Denote by L(V) the space of all bounded linear operators from V
to V provided with the usual operator norm. If a € L(V) the resolvent set of a is

p(2)={zeC:(z—a) "exists },
where z — a stands for z1 — a, as usual. The set p(z) is open. The function
R@):zep@r> (z—a)”!
is called the resolvent of a. The resolvent satisfies the resolvent equation
R(z1) — R(z2) = (z2 — 21) R(z1) R(z2).

Approaching matters the other way round, assume we have an open set G C C
and a function R(z) : G — L(V) satisfying the resolvent equation. Such a function
is called a pseudoresolvent; the resolvent equation implies that the R(z), z € G,
commute. From

(14 (z2 — z)R(z1))R(z2) = R(z1)

one concludes, that for |zp — z1| ||R(z1)]| < 1 the inverse of (1 + (zo — z1)R(z1))
exists and

R(z2) = (1+ (2 — 2)R(1) " R(z).
Hence R(z) is holomorphic in G.
Proposition 3.1.1 If R(z) : G — L(V) is a pseudoresolvent, then
D=R()V
W. von Waldenfels, A Measure Theoretical Approach to Quantum Stochastic Processes, 39

Lecture Notes in Physics 878, DOI 10.1007/978-3-642-45082-2_3,
© Springer-Verlag Berlin Heidelberg 2014


http://dx.doi.org/10.1007/978-3-642-45082-2_3
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is a subset independent of z € G. If R(zp) is injective for one zo € G, then R(2) is
injective for all 7 € G, and there exists a mapping a : D — V such that

@—a)R@)f=f forfeV,
R@)z—a)f=f forfeD,
or
R@=(G-a)";
furthermore,

aR(z)=—14+2zR(z) and R(z)a=-1+4+zR(2).

The operator a is closed. If Vo C V is a dense subspace, then a is the closure of its
restriction to R(z) Vo, where z is an element of the resolvent set.

Proof If f € R(z9)V, then there is a g € V such that
f=R(zo)g = (14 (z—z0)R(z0))R(2)g.

so f € R(z)V. Assume R(zp) to be injective and denote by R(izo)"!:D— Vits
inverse. Define a = zg — R(z0) ™', then, for f € D,

R@)(z-a)f=R@)(z—z20+ Rz ") f
= R@)(1+ (2 —20)R(z0))R(z0) ' f
= (R(@) + (z = 20)R(2)R(z0))R(z0) "' f = f.

The other equality is proven in the same way.
The graph of a is the subset

G={(f.af): feD}.

We have to show, that G is closed. Assume we have a sequence ( f;,, af};) converging
in V x V to (f, h). Then we may take g, so that f,, = R(z)gn, and

(z—a)fp=(@—a)R@)g =g —>zf —h=g
defines g, for which f, = R(z2)g, — f = R(z)g. So f € D and
af =aR(x)g=—-g+zR()g=—g+zf =h.

If (f,af) € G then f = R(z)g, and there exists a sequence g, € Vp, such that
gn — g. Hence R(z)g, — R(z)g and

aR(2)gn=—gn +zR(2)gn — —g + zR(2)g = af. O
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Proposition 3.1.2 Assume we have an operator a defined on a subset D of V, and
a function R(z) defined on an open set G C C such that R(z) : V — D, for z € G,
and

(z—a)R)f=f forfeV,
R(x)(z—a)f=f for feD.

Then R(z) fulfills the resolvent equation.
Proof We have

R(z1)(z1 — 22)R(z2) = R(z1)(z2 —a@)R(z1) — R(z1)(z1 — @) R(z2)
= R(z1) — R(22). O
If the assumptions of the last proposition are fulfilled, we call R(z) the resolvent
of the operator a.

A strongly continuous one-parameter group in L(V) is a family T'(¢), t € R, of
operators in L (V') such that

TO) =1,
T(s+1)=T(s)T(t) fors,teR,

and for f € V the function
t=T@)f

is norm continuous in V. Furthermore, we assume that there exists a constant » > 0
such that, for r € R,

7| < conste™"l.

From now on, all one-parameter groups 7 (¢) will be assumed to be strongly contin-
uous and to satisfy the bound on growth given just above.
Define, as we now are sure we can,

R(2) =i f° e T(t)dt for Imz > r,
)= .
ifi)oo e T(t)dt for Imz <r.
Proposition 3.1.3 Consider a family of operators T(t), t € R, with T(0) =1 and
t = T(t) f norm continuous for f € V,and | T (¢)| < conste’’; then T (t) is a one-

parameter group if and only if R(z) satisfies the resolvent equation for |Imz| > r.

Proof Assume to begin with that Im z; > r and Imz, > r; then

0 poo )
—(z2 — Zl)/ / i1t tiann (T(l‘] + 1) — T(tl)T(tz))dtldtz
0 0
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o0 t . .
=—4zz—ZI)/Q d(/ dr e 20T (1) — (75 — 1) R(z1) R(z22)
0 0

= R(z1) — R(z2) — (z2 — 21)R(z1) R(22).

If Imz; > r and Imz, < r, then
oo p0 .
@2—a{/ / R (T (1) + 1) — T (1) T (12))dt1dty
0 —00
(.¢] o . 3
= (22 —Zl)/ dt/ dtlemllﬂzz(l*ll)T(t)
0 t

0 t . .
+m—m/ y/deHMWWm—@—mmmmm
—00 —00

= R(z1) — R(z2) — (z2 — 21)R(z1) R(22).

The proposition follows from the uniqueness of Laplace transform. O

We call R(z) the resolvent of the one-parameter group T (t), t € R.
We have, for y > r,

o
iy R(iy) = y/ dte™'T () = / dtY()e ' T (1),
0
with Y () = 1,~¢. Using the convergence for y 1 co
yY(H)e " — 8(1)
one obtains the lemma:

Lemma 3.1.1 If R(z) is the resolvent of a one-parameter group, then for y 1 0o
and feV

iyRGy)f — f

in norm.
From there one obtains

Proposition 3.1.4 If R(z) is the resolvent of a one-parameter group, then the set
D = R(z)V isdense in V, and, furthermore, the mapping R(z) : V. — D is injective.

Proof That the set D = R(z)V is dense in V follows directly from the preceding
lemma. For the second assertion we have to prove

R@)f=0= f=0.
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But R(z) f — R(iy) f = (z —iy)R(iy)R(z) f =0, so R(iy) f = 0 and
f= )lggo iyR(y) f =0. 0

The generator S of the group T (¢) has the domain

T —1 .
Ds=3feV: hr% f exists
t—
and, for f € Dy,
. T —-1
Sf=1 .
f rgl(l) t f

Proposition 3.1.5 Define the operator a as in Proposition 3.1.1, and R(z) as in
Proposition 3.1.2. We have Ds = R(z)V = D and

S=(-)(1-R@™")=—ia.

Proof Calculate, for Imz > r,

o]

(1/s)(T(s) —1)R(z) = 1/(is)(/ e T (1 +s5)dt — /OoeiZ'T(t)dt)
0 0

=1/@s) </Oo(e—izs - 1)eith(t)dt — /X eile(t)dt>.
K 0
For feV
(1/8)(T(s) = 1)R() f — —izR(2) f +if.
Hence R(z) f € Dg, and
Sf=—-1zR@) f +if = —iaf.

So D C Dg. On the other hand, if f € Dg, then

(l/s)(T(s) — l)R(z)f = R(z)(l/s)(T(s) - 1)f — —iR@)f +if = R@)Sf

and also f € R(z)V =D and Ds C D. O

Assume now that V is Hilbert space with scalar product ( f|g). Denote the adjoint
of a bounded operator K by K*.

Proposition 3.1.6 With the current definition of R(z), the one-parameter group
T (¢t) is unitary if and only if
R(2)*=R@).

In this case is ||T (¢)|| = 1.
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Proof Calculate, for Imz > r,
oo —
R(2)* = i/ e T (1)*ds,
0
R@) = if e T (Hdt = i/ e T (—t)dr.
—00 0
By the uniqueness of the Laplace transform, we have
T =T(n=T)"
for t > 0. For t < 0 a similar argument holds. O

Definition 3.1.1 If —ia is the generator of a unitary strongly continuous one-
parameter group U (¢), we call a the Hamiltonian of the group and denote it by H.

Proposition 3.1.7 Assume given a pseudoresolvent z € G + R(z) with values in a
Hilbert space V; assume 7,7 € G,Im z # 0, that R(z)* = R(Z) and R(2) is injec-
tive, and that D = R(z)V is dense in V. Then

a=H=z-R(@)",
H:D=R()V — V isselfadjoint,

and (H — 1)~ exists for Im A # 0. The Hamiltonian H : D — V of a unitary group
is selfadjoint.

Proof We show first that H is symmetric, i.e., that

(fIHg) = (Hflg)
for f,g e D, or
(R(2)h|HR(2)k) = (HR(2)h|R(2)k),
for h, k € V. This can be done by a straightforward calculation, as
(h|R@)H R(2)k) = (h|(—14+ZRR@)R(2)k) = ((—1 + zR(2))hk).

We still have to prove that the domain of the adjoint is D. The domain Dy~ of the
adjoint H*, which is usually unbounded, is the set of all f € V such that there exists
a g € V with

(Hh|f) = (hlg)
forall & € D. So
(HR(k|f) = (R(2)k|g)
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forallk eV, or

(=14 zR@)kIf) = (kI(-1 +ZR®@) f) = (kKIR®@)g).
Therefore
—f+zZR@ [ =R(@)g

and f € D, and thus Dy« C D. The symmetry of H, and that D is dense in V,
implies that Dg= D D.
Define

U=1+Z-2)R®.
Then
vu*=U0*U =1,
U is unitary and ||U|| = 1. So
-0

exists for ¢ € C, |¢| # 1, as the corresponding power series converge. We have for

AFEZ

Z—A z2—2
U-— =14+Z—-2)R@ — (1
o +Z—2)R(2) < +Z—k)
72—z Z—2
=——(Z—MR@ —-1)= H— MR
— (G=DRQ@ ~1) = — (H =R
and
Z—A
‘7él<:>lmk7é0.
Z—A
So (H — A)R(z) is bijective, and since R(z) is bijective, H — A is bijective. 0

As a corollary of the two last propositions we have

Proposition 3.1.8 IfU(t), t € R, is a unitary strongly continuous one-parameter
group, then its generator is S = —1H and the Hamiltonian H is selfadjoint.

We will have to study, in Chaps. 8 and 9, the following situation. Let there be a
unitary group U (¢) and a dense subspace V) C V. Assume given a subspace Do C V
and z, 7 in the resolvent set of the Hamiltonian, and furthermore that R(z)Vy and
R(Z)Vp are contained in Dy. Let there be a symmetric operator Hy: Do — V, i.e.,
for f, g € Dy,

(fIHog) = (Hoglf)
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and assume that, for & € Vj,

HyoR(z)§ = —§ +zR(2)§,
HoR(2)§ = —§ +ZR(2)§.

Proposition 3.1.9 With the definitions in the previous paragraph, the subspace Dy
is dense in V, Dy C D, and

Ho=H | Dy,

and H is the closure of Hy.

Proof We know already by Propositions 3.1.1 and 3.1.4, that R(z) Vj, and hence Dy,
is dense in V, and also that H is the closure of its restriction to R(z)Vy. Consider
the matrix elements, for £ € Vy and f € Dy,

(IR Ho f) = (R@EIHo f).

Now R(Z)& is in Dy, and using the symmetry of Hy the last expression equals

(HoR()E|f) = (—& +ZR@)E| f) = (|- f + 2R f)-

As V) is dense in V, we obtain

R()Hof =—f +zR(@)f.

So
f=zRzZ)f —R()Hof e Rz)V =D
and
(z—H)f=zf—Hof
and

Hf = Hyf. -

3.2 The Spectral Schwartz Distribution

If G c Cis open, and the function f : G — C, f(z) = f(x +1iy) has a continuous
derivative, set

_dr_Loar Lof grodL_L0r L9
af_d_z_2<8x 18y>’ af_d2_2<8x+13y>'
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The function f is holomorphic if and only if 8 f = 0. In an analogous way one
defines these derivatives for Schwartz distributions [37]. The function z > 1/z is
locally integrable, and one obtains

a(1/2) =78(2),

where §(z) is the §-function in the complex plane. Assume we are given an open set
G c Cand afunction f : G\R — C, which is holomorphic and is the restriction for
z=x+41y € G,y > 0 of a continuous functiononz € G,y > 0,andforz € G,y <0
it is the restriction of a continuous function on z € G, y < 0. This is equivalent to
the statement, that the limit

lim f (¢ & i) = f (v %10)

exists locally uniformly. Hence f(x %10) exists and is continuous. We have
8 f(x +iy) = (i/2)(f (x +i0) — f(x —i0))5(y). ()

In the following we call a fest function an infinitely differentiable function with
compact support, and the space of these is usually denoted C2°, so we say we have
a CZ°-function.

In the symmetrical form of the Dirac notation for spaces in duality, one uses
two verticals in the notation, so that for instance below we write ( f|R(z)|g) where
we could have just written as before (f|R(z)g). This emphasizes the duality and
clarifies the calculations we make.

Proposition 3.2.1 Assume given a function R(z) : G — L(V), defined and obeying
the resolvent equation almost everywhere, and a subspace Vo C V such that z +—

(fIR(2)|g) is locally integrable for all f, g € Vy; then

21,22 (fIR(z1)R(z2)|g)

is also locally integrable, and for the Schwartz derivatives one has the formula
0102(f|R(z1)R(22)18) =78(z1 — 22)0(f|R(z1)|8).

Proof The resolvent equation has as a consequence that z1, z2 — (f|R(z1)R(22)]g)
is locally integrable, as e.g.,

1
21, 22> ——(fIR(z1)|g)
22— 21

is locally integrable.
Given two test functions @1, @2, then

/ f d21d22(31 T2 FIRGDR2)19)) o1 (2D (22)
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1 _ _
= [[ de1ta—— (F1(RG) - RE) DT101 D222,

and, looking at the first summand on the right-hand side and integrating by parts
over zp, we have

1 _ _
//d11dzz (FIRGDI®T191 (21)T202(22)
72 — 21

—— / dz(fIR()|2)01 @2 (2).

For the second summand we have a similar calculation with a result differing in
overall sign, and we obtain

/ / 421422 (313 (FIR D R(2)18)) 01 (212 (22)
S / G(fIR@)1)3 (61 De2(2))

= [[ dzrdzams(ar - 23 1RGN 0. -

Definition 3.2.1 Under the assumptions of the last proposition we call
M =(/7)dR
defined scalarly for f, g € Vjy by
(fIM(2)1g) = (1/m)3(fIR(2)|g)

the spectral Schwartz distribution of R.

Corollary 3.2.1 As corollary of the last proposition we have

/ / dz1dza (FIM(21)M(22) )01 ()02 (z2) = / GZ(FIMD)|9)e1 (D).

This can be written
M (z1)M(z2) = 8(z1 — 22)M(z1)

or

M(p1)M (p2) = M(p192).

Proposition 3.2.2 Under the assumptions of the last proposition and under the
additional assumption, that R(z) is injective, denote again by a the operator defined
by the resolvent. Then we have

aM(z) =zM(z)
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or more precisely

(flaM(z)|g) = z(fIM(2)|g)-

Proof We have
- / dz(f1aR(2)|g)3(p(z) = — / dz(f1(~1 + 2R()1g) 3 (2)

_ / dzz0()3(fIR(2)|2)

as
3z =0. 0

Remark 3.2.1 The spectral distribution seems to be an interesting object. Suppose
we have a matrix A with the resolvent

1 1
R = — = ;
(2) —A Ei )\ipt

7 —
where p; are the eigenprojectors, so that p; p; = p;d;;. Then
M(z) = (1/m)IR(2) =Y _8(z— hi)pi-
i
We have, for test functions ¢1, ¢2,
M(p)M(p2) = // dz1dzaM (z1)M (22)@(z1)@(22) = M (p192).
The last equation also holds if A is nilpotent, e.g., A2 = 0. Then one has to take
1 1
z b4
where & denotes the principal value. Then
M(z) =6(z) — Add(2).
We consider again, as in Proposition 3.1.7, a pseudoresolvent z € G — R(z) with
values in a Hilbert space V, and assume z,7 € G,Imz # 0, R(z)* = R(Z), and R(z)

injective, and that D = R(z)V is dense in V. Then R(z) can be extended to the set
of all z with Imz # 0.

Proposition 3.2.3 Ifz+— (f|R(2)|g), for f, g € Vo, is locally integrable, then

.1 . .
(flu(x)lg) =1lim %(fI(R(x —i0) — R(x +i0)|g)



50 3 One-Parameter Groups

exists in the sense of Schwartz distributions. Furthermore

(flw@)f)

is a measure > 0, and

(fIM(x+iy)lg) = (flux)]g)s(y).

If (fIR(x £ 0)|f) exists locally uniformly and is therefore continuous, then
(fIu(x)| f) has continuous density > O with respect to Lebesgue measure, and is
given by
1 . .
(Sl f) = 5= (fI(R(x =i0) = R(x +i0)| f).

Proof We write z=x+1y = (x, y) and use both notations. We use the abbreviations
(fIR()|f) = F(2) and (f|M(2)|f) = G(z). The other matrix elements can be
obtained by polarization. The distribution

G(z) = %mz)

has as support the real line, the function F(z) is holomorphic in Im z # 0 and locally
integrable. If ¢ is test function, we define

Il = sup{|e(@)| + |dc@ ()] + |3y0(2)]}.

/ G(z)(ﬂ(z)dz=—% / F@)3p(2)dz

we have that for any compact subset K of C there exists a constant Cg such that

= Ckllelh.

‘/ G()e(2)dz

Define a test function p on R
0=p(y =1,

I for0<|y|l<1/2,
p(y) =
0 for|y|> 1.
If o is test function, then
|y* ¥ @pk/e)], = 0)
for ¢ | 0. Hence

/ dz G(2)y*¥(y) =0, (i)
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because

V@1 - py/e)
has its support in C \ R, and we have

‘ / dz G(z)yzwy)‘ - ‘ / 42 Gy Y (p(y/e)| < Cx [y @p(r/e)], = 0(e).

if ¥ has its support in the compact set K.
Choose a test function ¢ and r so large that the support of ¢ is in the strip
{ly| <r}. Then

/dw(z)G(z)=/dz<0(z)p(y/r)G(z)

= [ dz(o(. 00+ 05,00y + ¥70@) o3/ 1IG0).
Taking into account (i) we obtain

G(2) = Go(x)8(y) — G1(x)8' () (ii)

with, for any test function y (x),
/ dx Go(r)x (x) = f 42 G x (/7).

/ dx G (1) (x) = / A2 G xx)yo(y/r),

where these expressions are independent of r, provided that the support of ¢ is in the
strip {|y| < r}. Equation (ii) is a special case of a theorem due to L. Schwartz [37].
We calculate

/dz(flR(z)If)5<p(z) =/ dxdy(fIR(x +1y)[f)(1/2)(3x +18y)¢(x, y).

Now

(fIRG iy f) = (fIR(x +i)*|f) = (fIR(x —iy)| f)

and we obtain
// dxdy(f|R(x —iy)| f)(1/2)(0x —idy)@(x, y)
= // dxdy(fIR(x +iy)| f)(1/2)(8x +19y)@(x, —y)

_ / dz(fIR@)| )3 (2)
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with
P(2)=9@) =9(x, —y).

‘We continue with the estimate

+
Os(fl(/dZ1R(Zl)5<p(Zl)> (/d12R(Z2)5¢(Zz)>|f)

- / / dz1dz2(fIRGDR GG T(z2)

- / Az (fIR@IPF@@)e().
Hence

/ G(F M@ )FEeE) = f 16()3()e(2) = 0. (i)

Use Eq. (ii) and obtain

05/deo(x)|g0(x,O)|2+/de1(x)(—8y¢(x,0)<p(x,0)+¢(x,0)8yga(x,0)).

As 9y (¢(x, 0)) can be chosen arbitrarily, we conclude that G = 0, and, again using
L. Schwartz [37], that Go = (f|u| f) is a measure > 0.
We have

1 _
/dx Go(X)X(x)=/de(Z)X(x),0(y/r)=—;/dZ F(2)ax (x)p(y/r)

1 —_
=——1lim dz F(2)ax(x)p(y/r)
T ed0Jpy|>e

1

= glgig)l/dx(F(x+i8) — F(x —is))X(x).

This is the equation for p in the proposition. If F'(x £ i0) exists in the usual sense
locally uniformly, then it is continous and we have by Eq. (x) at the beginning of
the section, that

1
(flp@)|f) = E(ﬂ(R(x —i0) — R(x +i0)| f).

Hence (f|u(x)]f) is a continuous function > 0 , identified with the measure whose
density it is. O

Proposition 3.2.4 Assume furthermore that | is a bounded measure. If ¢ € C2°(C)
is a test function, then

1//=/dC<P(§)/(z—§)
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is a C* function vanishing at co. We have in the sense of distributions,

/dx(f|M(X)|f)/(Z —x) = (fIR@)]f).
Proof We have

/ A (f )| Y () = / (@) / ax(flu) £)/ (¢ —x)

and

1 _
=/(f|M<;>|f>w<;>d; =—;/d§(f|R(§)|f)8;W(§)

Z/dé(flR(C)lf)w(;“)- .

Remark 3.2.2 Compare this result with the formula of the spectral theorem

(f|1/(Z_H)|f):(flR(Z)|f):/(f|dEx|f)l/(Z_x)
for f € V. Then for f € V, one concludes

(FIAEL[f) = (flm(x)|f)dx,

where (E,, x € R) is the spectral family of the self-adjoint operator H.

Example Consider the multiplication operator 2 in L2(R), given by (22f)(w) =
wf (w). The resolvent
Ro(x)=(—-2)"

is holomorphic off the real line. The domain of §2 is the space D = R (z)L?, the
space of all L? functions f such that 2 is square integrable. Here we have defined
£2f for all functions in a natural way. The corresponding strongly continuous one-
parameter group is

Uy=e ™, (U f)(w) =e f(w).

The group is clearly unitary, as is confirmed by the equation R (2)* = R (2).
For f,geC Cl

(fIRe(x £i0)|g) = /dw?(w)g(w)z@/(x — o) Fin f(x)gx).

So
(flu()lg) = f(x)g(x).
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The generalized eigenfunctions are
Sy (W) =8(x —w).
Using the Dirac formalism of bra and ket vectors we obtain
p(x) = [8:) (|-

We have
1

! u(x):/dx
Z—X -

Ra() = / dx 18051,
X

and
£216x) = x|8x)-

The eigenvectors &, form a generalized orthonormal basis, i.e.,

(8x18y) =d(x —y), /dXI5x)(5x|=1-

The first equation can be checked directly and follows from Proposition 3.2.1. The
second equation says that [ dxzu(x) = 1.



Chapter 4
Four Explicitly Calculable One-Excitation
Processes

Abstract We consider in this chapter four examples which can be treated without
much apparatus. Three of them are of physical interest. We do not need the full
Fock space but only its one-particle and zero-particle subspaces. We calculate the
time development explicitly and give the Hamiltonian. We obtain its spectral de-
composition with the help of generalized eigenvectors.using a method, which has
been applied in the study of radiative transfer by Gariy V. Efimov and the author in
J. Spectrosc. Radiat. Transf. 53, 59-74 (1953).

4.1 Krein’s Formula

The formula in the theorem below is an important tool in our discussions. I know it
as Krein’s formula, and we’ll call it that. If M is a quadratic matrix, its resolvent

- 1

R(z)=(z—M) =M
is a meromorphic matrix-valued function for z € C. Its poles are the eigenvalues of
M, its residues at the poles are the projectors onto the eigenspaces, and the Lau-
rent expansions at the poles give the principal eigenvectors often called generalized
eigenvectors. We shall use the term generalized eigenvectors in another sense below.
We allow fractions for non-commutative quantities, if the numerator and denomina-
tor commute.

Theorem 4.1.1 (Krein’s formula) Given a matrix of the form
0 L
1=(G &):
where 0, K, G, L are block matrices, then the resolvent can be written

1 f0 0 1 1
R(Z)_z——H_<O RK>+<RKG)C (1, LRk)
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with
Rk =Rk () = 1
K= KZ—Z_K

and

C=C(z)=7z— LRk (2)G.
Proof We have to check, that

HR(z) =—1+4 zR(2).

Now
_ (0 LRk LRxG 4
HR= (0 KRK> T (G + KRKG> ¢ (0, LRg).
Use
KRk =—1+zRx and LRxkGC '=—1+zC"!
and a short calculation provides the proof. g

For Im z sufficiently large, positive or negative,

—ifoo dre HIHZ for ITmz > 0,
R@D=1. 6" . i
ifC dreHH for Imz < 0.

Set
Uy=e ', Ug@)=eK
and write for the Heaviside function
Y#) =10, Y(@®)=Y(—1)=1,0.

Define the Laplace transform for a function of ¢

(fﬂ@=fm¥7m.

Then

@) = —i(ZUY)(z) for Imz >0,
" |izuY)(z)  for Imz <O.

Using the Schwartz distributions § and 8" we have

1=95, 7=1%¢".
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Define the function Z(¢) such that

—i(ZZY)(z) forImz >0,

—1 _
¢ @= i(.ZZI?)(z) for Imz < 0.

The equation
(z— LRkG)C™' =1

becomes, since convolution is mapped into ordinary multiplication by the Laplace
transform, a pair of formulas, one for positive ¢ and one for negative 7, namely

(8’ + LUKYG) x ZY =3,
t
Z’:—/ dt; LUk (t — t1)GZ(t1), Z0)=1, Z(t)=0 fort<0
0
and
(=8’ + LUk YG) % ZY =36,
0
Z’:/ dyy LUk (t —t1)GZ(11), Z0)=1, Z(#)=0 fort>0.
t
Krein’s formula becomes under the Laplace transform, for ¢ > 0,

0 0 ) .
Uy = (O UKY) + <—iUKYG> ¥ ZY % (8, —1LUkY)

upon canceling one of the factors of —i that occurs throughout, and for ¢ < 0 simi-
larly becomes

. (0 0 5 . .
y— . o ) w2V« LUK T).
v <0 UKY> + (iUKYG) *ZY % (3,ILUKY)

4.2 A Two-Level Atom Coupled to a Heat Bath of Oscillators

4.2.1 Discussion of the Model

The two-level atom in a heat bath of oscillators is equivalent to the harmonic oscil-
lator in a heat bath of oscillators. The heat bath causes transitions from the upper to
the lower level. The oscillator is being damped [40].

In quantum mechanics a harmonic oscillator with frequency w is described by
two operators ¢ and a™ with the commutation relation [a, a™] = 1. So they generate
a Weyl algebra. Their representation has been described in Sect. 1.7. We have a



58 4 Four Explicitly Calculable One-Excitation Processes

vacuum |0) and the vectors |n) = (a¥)"*|0), n > 1. They span a pre-Hilbert space
with the elements

f=Y_/n) fuln)
n=0

and the scalar product given by
(nln)y=n18,

hence

(flgy=>_(1/n") fugn.

n=0

Our notation differs from the one common in quantum mechanics. The vectors |n)
are usually normalized with the factor (n!)~1/2, The Hamiltonian is

H=wa"a.

So H|n) = wn|n) and exp (—iHt) can be defined so that

e—th |n> — e—inwt|n).

One obtains

iHt e—lHl — oot e1Hta+e—1Ht —

ellg e Wy, 1f g+

€

Consider now a finite system of oscillators, with frequencies w;, given by the
creation and annihilation operators a,,, a;r, A € A. The representation space is a pre-
Hilbert space spanned by the vectors |m) = (a™)™|0), where m runs through all
multisets of A. The Hamiltonian is

Hy = Z wxaz'ax
reA

and

e 10t |y = exp(—i Z m,\w,\t> [m)

reA

form=73", _,my1,. We have

CIHOI(I)\C_IHOZ — e_lw“a;\, elH()ta;-e—lH()l — elwxla;-.

A non-degenerate two-level atom is described by a two-dimensional Hilbert
space spanned by |+) and |—). The Hamiltonian is given by

Hytom|~+) = wol+), Hytom|—) =0
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or, upon defining |+)(£| = E4 4,
Hytom = woE 4.

We are interested in a two-level atom coupled to a system of oscillators. The total
Hamiltonian is, with coupling constants g; and #,,

Hiot = Hy + Hatom + Hint

= Z a))ha;j_a)\ + woE4+
reA

+Y (@B + 800 E_ + i E_y +hoal Ey ).
reA

We calculate the interaction Hamiltonian in the so-called interaction representation

= Z (gkak E+,ei(_"”‘+w0)t + g)ﬂ;_ E,+e_i(_w"+w0)t
rEA
+hya E_+ei(—w>\—wo)t + E}la;r E+_ei(+w"+w0)t) )
Assume now |w; — wg| K wg, then the terms including #; vary rapidly and can be

neglected. This is the so-called rotating wave approximation. Define o), = w) — wo,
then

Hiot = wo(z afax + E++) + Zw;a:ax + Z(gxaAEJrf +§)\a;‘E,+).
rEA AN rEA

The expression ) _, . a;fax + E . is the operator corresponding to the number of
excitations in the system. It commutes with H;y and gives a background contribu-
tion, which is neglected in the dynamics that are being calculated. So we take a
simplified total Hamiltonian

Ho= Y ohai e+ Y (s e 45,67 E ).
reA reA
The interaction Hamiltonian in the interaction representation now becomes
Hip (1) = Z(g;ake_‘WEJr, +ga e E_L).
reA

Define

Ft)=) grae™;
reA
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we interpret it as coloured quantum noise [23]. It has the commutator

[F@©), FF ()] = 3 lgs 2emih 0=,

LEA
‘We obtain
Hy (t)=F(WE{ +FT()E_,.

Assume, that the number of excitations is 1, then we have only to consider the
states

[+) ®10), |-) ®11,), forie A,

and we can represent Hio by the matrix H in the space C & cA

0 (g|>
H= ,
(Ig) 2
where |g) is the column vector in C# with the elements g;, and (g| is the row vector
with the entries g, ; also §2 is the A x A-matrix with entries a)ﬁﬁx, -

If we assume continuous sets of frequencies, and make the rotating wave approx-
imation, we arrive by analogy at

Hyot = Ho + Hatom + Hint

— o ( / a* (dw)a(w) + E++)

+/wa+(da))a(a))+/g(a))a(a))da)E+_+/w§(w)a+(da))E_+.
The term
f a*(do)a(@) + E4t

is the number of excitations. We assume it to be 1 and disregard it. In the interaction
representation we obtain

Hiy (1) = f dw g(@)a(w)e ' £y + / Z@)at o) E_,
=F(W)Es+— +FT()E_4
where
F(t) = / do g(w)aze !

is the quantum coloured noise with the commutator

[F@), F7 ()] = OIF ) F ¥ (¢')10) = f doo|g(w)|Pe=@ 1),
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Under these assumption, we may write Hyy in the form of a matrix over C @ Dy,
where 2 is the multiplication operator acting on functions on R, and Dy, is its
domain, so that

0
H, = <|g> %’) —QE__+E, (gl +E_Ig)

with
1g) = (8(@)),, .5 € L*R).
We want to change g in such a way, that
[F@), FX(¢')] = OIF ) F*(¢)10) = 278(r — 1');

this means that g approaches 1. This is the so-called singular coupling limit.

There are other physical situations, which yield the same mathematical problem.
Consider a harmonic oscillator with frequency wy in a heat bath of oscillators. De-
scribe the oscillators by the creation and annihilation operators b, b. Then Hamil-
tonian of the damped oscillator in the rotating wave approximation is

Hiot = Ho + Hosc + Hint = Z wxafax + w0b+b + Z(glakb+ + gka;r )
reA reA
The number of excitations is
Z ara;h +bTD.
reA
It commutes with the Hamiltonian and is set to 1. Then we arrive, as before, at
Hiot = Zwia;a;\ + Z(g;ﬂ;lﬁ' +§Aa;\'_ )
rEA LEA

A third possibility is the Heisenberg equation for the damped oscillator. If A is
an operator,

n:(A) = exp(—iHio) A exp(+iHioy).

E(m(m):Z(o <g|) <m(b)>
dt \ni(a) &) 2/, \m(a))

N

Then

Continue as before.

4.2.2 Singular Coupling Limit

We define the Hilbert space
H=Ceo L R)
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with the scalar product

(e, NI g))=7cc" + / dx f(x)g(x).

As explained in the last subsection, we discuss the operator on C @ Dy, C $) given

by the matrix
0 (gl)
H, = ,
§ (Ig) 2

where g € L? and £2 is the multiplication operator considered already at the end of
Sect. 3.2.

Proposition 4.2.1 The resolvent R, (z) of Hy is given by

1 0 0 1 1
—m, - R@= (0 RQ(Z)) + (R.Q(z)lg)) oo 1 (elR2 @)

with

2
g,

Ce(x)=z—(glRe(D|g) =2z~
I—w

The resolvent is defined for Im z # 0 and we have the equation
Ry(2)" =R, (D).

Proof One checks immediately that R(z) is defined for Imz # 0, that Rt =
R(z), and that R(z) maps $) into the domain C @ Dy, of H,. By the same calcula-
tions as the ones we were using for Krein’s formula in the matrix case, we establish
that

(z— Hg)Rg(2) =1,
R, (2)(z — Hg) = 1.

By Proposition 3.1.1, we see that R, (z) is the resolvent of Hy. 0

We want to replace g by the constant 1. We denote by E the constant function 1
and by the bra-vector (E| the linear functional

feL'®) — (E|f) =fdxf(x> eC,

and by the ket-vector |E) the semilinear functional

feLl'®) ~ (fIE) =/dxm= (E|f)eC.
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We perform the so-called singular coupling limit. We consider a sequence g,
of square-integrable functions, converging to E pointwise, uniformly bounded by
some constant function, with the property

gn(@) = gn(—w).

Then, for fixed z with Im z # 0, the resolvents Ry, (z) converge in operator norm to

0 0 1 1
R(z) = (0 RQ(Z)) + (RQ(Z)|E)> %(1 (E|Rg(2))-

The function
C()=z+ino(2)
with

1 for Imz > 0,
0(z)=
—1 for Imz <O

is holomorphic in the upper and lower half-planes and continuous at the boundaries.
We extend the operator R (z) = (z — §2)~! to all functions on the real line. So for
felL?

(fIRe()|E) =(E|Re)|f) = /?(w)/(z —o)do.

The function R(z) is defined for Im z # 0, and, as a limit of resolvents in operator
norm, the function R(z) fulfills the resolvent equation. Furthermore R(z)* = R(2),
which could be seen immediately directly.

We want now to discuss existence and the shape of the Hamiltonian of R(z).
We fix a number z € C,Imz # 0. The domain of the Hamiltonian can be directly
determined by the resolvent with the help of the formula

D =R(2)9.
Hence

— _ 0 1 . F 2
D‘{f_(Rg(z)f>+c(RgE)’fEL ’CEC}’

One concludes at first, that the obvious guess for H is wrong:

0 (E|
H’é(lm 9)
as, e.g.,

dw

I—w

<E|R9E>=f

is not defined.
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We propose a more refined construction. Define the space of functions on R
¢={f:f=f+cEwith fe L’(R),ceC}.
We then define the subspace £ C L?
L=Ro()€={f=Ro@(CE+ f): felL?

or more explicitly f € £ if and only if, for some ¢ € C and f elL?

f(w)= (c+ f().

I—w

The space £ is independent of the chosen z as
Ro(20)(cE + )= R (@) (1 + (z — 20)R2(20)) (cE + f)

and f+ R (z0)(cE + f) e L

Denote by £* the algebraic dual of £, i.e. the set of all linear functionals
£ — C, and by £ the set of all semilinear functionals £ — C. A semilinear
functional ¢ is additive and ¢(cf) = co(f) for f € C. By the scalar product
(gl f)= f dw g(w) f (w) we associate to any f € L? a semilinear functional ¢ on £,

@)= (&1f).

As £ is dense in L2, the functional determines f. So we may imbed L? into £ and
gcL*cel.

Define the functionals (12“ | € £*, and also |E )y € £F, for f of the form given above,
by

(E|f) = lim / f(w)dw:—inco(z)Jr/Lf(w)dw
r—>0oo J_,. Z—w

and

Define the operator
2:£- ¢,
~ r
2= tim [ doT@ar©).
r—>o0 —r
Qf =—clE)— f+zf.
Compare it to the equation holding pointwise

Qf =—cE — f +zf.



4.2 A Two-Level Atom Coupled to a Heat Bath of Oscillators 65

We have, in particular,

(E|RQ(2)|E) = —ino (2),

$2oR()|E) = —|E) + zRR)|E).
Define the operator

HCof—Cogl
ﬁ=<9 <€').
|E) £2

Theorem 4.2.1 The operator H maps £ €eCo L — HeeCoL =9 if and only
if

EeD

ie.

= (ratorce + )
“\Re@(E + )

with c € C, f € L%, We have
HRQ@)f=—f+zRQ)f.

So the Hamiltonian H exists and is the restriction of H 10 D.

5= ()= (raorier + 5)
“\f) \Re@CE+ )

)11
f (E|—=c(El = f+zf)

HeeH o EeD.

Proof Assume

‘We obtain

Hence

Using the same calculations as in the matrix case in Sect. 4.1, namely Krein’s for-
mula, one obtains

HR@Z)f=—f+zRQ@)f.

From there one concludes, that R(z) is injective. By Proposition 3.1.1, it gives rise
to a Hamiltonian H, which is selfadjoint. It is the restriction of H to D. O
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Remark 4.2.1 By direct calculation one establishes, that H is symmetric, i.e. that

(fIHg) = (glHf)=(Hflg)

for f, g € L.

4.2.3 Time Evolution

The function R(z) is determined by a function U(¢) for t € R whose values are
operators on $):

R(z) = —i(ZUY)(z) forImz >0,
9= i(fUlV/)(z) for Imz < 0.

Hence, fort > 0,
vr= (8 UgY) + <—iU_(§Y|E)> * ZY x (8, —i(E|UgY)
and, for r <0,
U?:(O 0V>+(. 8 >*Z?*(8,i(E|U_Qf/)
0 UgY iUQY|E)
with

Z=e 7l

Writing the convolutions in an explicit way we have, for ¢ > 0,

_(Uoo Uoi
U(t)_<U10 Ull)

with

Up =e 7,
t .
Uol = —i / dre U= (EleTin
0
l .
U= —i f dre )| pyemTh
0

U]] — e—i.Qt _ // dt] dtze—iﬂ(t—tz) |E>e—ﬂ(t2—t|)<E|e—iQtl .
O<ty<ty<t

Lemma 4.2.1 The operator U (t) depends continuously on t, and |U (t)|| = O (+/1)
fort — oo.
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Proof We prove the lemma for ¢ > 0. The proof for ¢ < 0 is similar. It suffices to
show the assertion for the U;y. It is clear for Uy.

t
Uw @) (@) = —i/ dlleiiw(tftl)efml = —i;(e*m _ efia)z)'
0 iw—m
Then
”Ulo(t)||2=/da)|U10(t)(a))]2§/d

o
72+ w?

is bounded. The function Ujo(7)(w) is continuous in L2-norm by the theorem of
Lebesgue, as it is a continuous function bounded by a fixed L2-function. We have

(U1 ()1 ) =/dw Uio () (@) f (w)

and one obtains the desired result from that for Ujg. The continuity and norm bound
are trivial for e 42!, For the second term of U;; we have to consider

F(t)(w) = — / / dtydrye @) g7 (=) / dwie M £ (o)
O<ti <<t

t
= —i/o dnUio(t — 1) () f(11)
with
f(tl)zfdwle_iw't'f(wl)-

‘We calculate

t t
||F(r)||2=/dw!F(r)(m)Fs/dw/0 dr1|Ulo(z—n>(w)|2/0 dn| fan[?

4t o 2 8t 2
< | do———= dr t = [ do——— .
_/ s f_oo | Fan)| / oI -

With the results of Sect. 3.1 we obtain the theorem

Theorem 4.2.2 The U (t) form a one-parameter unitary strongly continuous group
generated by —i1H , where H : D — $) is defined by Theorem 4.2.1.

Physical Interpretation The term Uy () is the probability amplitude that the atom
started at # = 0 in the upper state and stayed there until the time ¢. So the probability
that the atom is at time  in the upper state is e ~>"*. Then Uy¢(¢) () gives the prob-
ability amplitude that the atom is at time # = 0 in the upper state, and jumps at time
t to the lower state, emitting a photon of frequency w. The asymptotic frequency
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distribution for t — o0 is

. 2
R

the well-known Lorentz or Cauchy distribution. Uy (¢)(w) is the probability ampli-
tude that at time O the atom is in the lower state, and a photon of frequency w is
absorbed between the times 0 and ¢. The matrix element

(a)/|U11(t)|a)) _ e—iwts(w/ _ a)) _ // dtldt2efiw’(t7t2)efn(t27t1)efiwtl
O<ty<ty<t

corresponds to the case that an incoming photon of frequency w either passes by
unperturbed, or is absorbed and reemitted with frequency «’.

4.2.4 Replacing Frequencies by Formal Times

By the use of the Fourier transform we replace frequencies labelled @ by formal
times labelled 7. This is used in quantum stochastic differential equations and makes
them similar to classical stochastic differential equations. In addition, it gives some
insight into the physical situation. Introduce

V(o) =8(w— o), ¢ (@) = 2m)~ 26l

Then
(Wolpr) = @n) 72T, (pclihy) = @m) /27T,
Define
F[(2) = @u) 12 / doe ™7 £ (@) = (e f).
Calculate
F(e ) =F ft+1)=(00)F f) (),
where

(©(Mg) () =gt +1)
is the right shift. So
Fe =017 .
One finds
FE(t)=Qn) ?5(1).
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Define

—i [y dtel¥O(t), for Imz >0,

Re(z =.%R 4 y—l = i
6(2) 2(2) i[0 dreO@), for Imz <0.

Then Re(z)L? is the Sobolev space of those functions on R which are L? and the
Schwartz derivatives of which are L2 as well. For Im z > 0, one has

(ZFRa()E)(r) = (Ro(2)(2m) ™" /28) () = —i(27) "/ 1{r < 0)e 7.
The space
FL={Ro(@)(f +c8): feL? ceC}

consists of functions which are L2, the derivatives of which are L on R\ {0}, and
which have a jump at 0, and where the left and right limits exist. Define

6, £)=1/2(fO+H) — £(0-)),
Of =0 f + (FOH) — F(0)8

where 0. f is the restriction of df to R\ {0}. One obtains

gz =( 0. VIO
/2m|8) 10
Recall
Up =e7,
l .
Upg = —i/ dtle_n(t_tl)(Ek:_l‘Q[l s
0
t
Uip = —i / dre 20| pyeh
0
Ull — e—i.Qt . f/ dtldtze—iﬂ(l‘—tz)|E>e—7T(tz—tl)<E|e—i.Ql] )
O<ty<ty<t
Factorize

1 0
U(t):<0 Ug(t)) V().

So V(t) is an interaction representation of U (¢). We have

Voo(t) =e™ ™,

t
Voi(t) = —i / dre ™= (Ele= 2,
0
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t .
Vot =i [ dnel®|Eje,
0

Vi) =1-— // dtydre P2 | EYe ™ (271 (Fle~i$20
O<ti<ty<t

We obtain in 7-representation

Voo(t) =e™ 7,

t
(Vor)17) = i2m) 7 [ e~ 05 — ),
0
t
(r1Va0(0) = =i2m) " [ ansey — e,
0

@IV = 8(1 — 1) — 21 / / dndiad (22 — 1)e S (1 — 1),
O<ti<thy<t

So Vi1(t) corresponds to the case that at time O the atom stays in the upper level
and no emission occurs. Then (Vy1(¢)|t) is the probability amplitude for the case
that between O and ¢ at time 7 a photon, with the label 7, is absorbed, and (| V1o(?))
is the probability amplitude that at time t between 0 and ¢ a photon, with label 7, is
emitted. Finally (72| V71(¢)|71) is the probability amplitude that at time 71 a photon
with label 77 is absorbed, and at time 1 > 71 a photon with label 75 is emitted, all
with 0 < 71 < 1 < ¢, or that the photon passes undisturbed.

Remark that V (¢) is related to the solution of the quantum stochastic differential
equation

/AU 1) = —iv2ra" ODE_LU@) —iV2n E4_U(t)a(t) — mE., U (t).

Here, as in Sect. 4.2.1, E4 1 are the matrix units of two-dimensional matrices. The
differential equation leaves the number of excitations

/ o+ (d)a(@) + Eost

invariant, and V (¢) is the restriction of U (¢) to the subspace of one excitation. Quan-
tum stochastic differential equations will be discussed below in Chap. 8.

4.2.5 The Eigenvalue Problem

‘We start with the well-known formula

1
x £i0

z .
= — Fimd(x).
X
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Here &7 /x denotes the principal value. If f is a function differentiable at 0, then

/dx?f(x)z lim deM:/dx f(x)_f(2)1{|x|5 b

e X

The equation means that, for f € C, Cl the space of once continuously differentiable
functions with compact support,

tim [ dx L™ =/dxf(x)<2 q:inS(x)>.
x xie X

el0

We continue with the observations

1
xti0—w x-—

Find(x —w)
w

and

Ro(x +i0) ! i — = - inls) 6]
= = X — [
@ YL x-—2 7T x5 o0

as, for f, g e CC],

_ 9 _
(fIRo(x £i0)]g) = / dF (@) g0) Fin F ).

For f € Ccl., we have the limits
. & .
(EIR(xiIO)f>=/dwmf(w)ﬂFlﬂf(X),

P _ _
(f|R(xiiO)E):/dwmf(w):pinf(x).

We define the subspace $9 C $ = C ® L*(R)

502{(;) :cec,fecj(R)}.

Recall the spectral Schwartz distribution and the formulae of Sect. 3.2:
AR(z) =T M(2),

M(x +iy) = u(x)é(y),

1
p(x) = %(R(x —i0) — R(x +1i0)).

Proposition 4.2.2 For &, & € $Ho we have

€111/ (R(x —i0) — R(x +10)[&2) = (6111 (0)162) = (1 lotx) (tx|€2)
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with
loty) : ( ! )
Oy) = —F——=— .
T T a2 \x18) + 25| E)

Proof Recall that

0 0 1 1
k= (0 R9<z>> * <R9(z)|E>> e (1 (EIR2 @)

Write
! =aFinbh
Ro(x+i0)E)) =4 T
with
1 0
= 4 s b=
. (x_f9|E>> (m)
and
at=(1, (Eli%). b7 =(0. )
Then

! R i0) — R i0
Z—m( (x —10) — R(x +1 ))

1 1
=bb" + o ((a +inb)——(at +inb™) — (@ —inb)

X — 1T

(a* - inb+))

X +im
= m(a +xb)(at +xbT) = Joy) (x|

The first term comes directly from the equations for Rg (x £0) given recently above.
The rest of the equation requires arithmetic and the definition of |oy). O

Recall the space € of Sect. 4.2.1, and define the subspace
C={cE+ f:ceC, feC'nL?}

and the space of distributions

=) Rx*i0)€ =1f=c Z
X — X —

Qg—i—czﬁ(x—f))g:ge@o}.

We extend the functional E to 2; and define

(E|f)= lim_ ' dof (o).
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As
N r P
<E E> = lim dw =0
X — r—oo |, X —w
,
<E|8(x—Q)E>= lim dod(x —w) =1
r—>oo J_,
we obtain

(E|Rg(x £i0)|E) = (E|Rg (x +i0)|E) = Fir.
As Ro(x £i0)|E) = R (x £10)|E), we have

(E|Ro(x £i0)|E) = Fin.

Define
£o=R(2)&y.

Extend the operator £2 in the same way as in Sect. 4.2.2 and obtain an operator
5. o/ T.
£2:£,— L

2 acting on semilinear functionals £y — C has the following specific properties:

218,) = x8y), (5,182 = (8:]x,
N A P KA . 4
Q——FIE)==IE)+x——2lE),  (El—58 =—(E|+x(El—F.

Use these equations and obtain

Proposition 4.2.3 |«,) is an eigenvector of H for the eigenvalue x, i.e.,
Hlax) = xla).

We cite the definition of a generalized eigenvector due to Gelfand-Vilenkin ([18,
p- 105]) “Let A be an operator in a linear topological space @. A linear functional
F on @ such that

F(Ap) =AF(p)

for all p € @ is called a generalized eigenvector corresponding to A.” We can adapt
this definition to our situation.

Proposition 4.2.4 If & € §, then

(ax|R(2)E) = (ox |E).

—X



74 4 Four Explicitly Calculable One-Excitation Processes
So oy is a generalized eigenvector of R(z) for the eigenvalue 1/(z — x) in the sense

of Gelfand-Vilenkin.
If € in the domain of H is of the form

t=gai0z) * (7)
~ \Re®@E S

(ax|H|E) = x(HIE).

with c € C and f € C., then

So & is a generalized eigenvector of H for the eigenvalue x in the sense of Gelfand-
Vilenkin.

Proof The proof is carried out by straightforward calculation using the equation

P .
(E] —5|E)=(E| |E)
xX—82z—-% xX—82z—-%
B——(Z L) E) = ——io(2)
— — = 1 .
Z—x\x—82 z—-%2 Z_xazn'
Recollect o (z) is the sign of the imaginary part of z. d
As
& dlog|x]|
x  dx

in the sense of Schwartz distributions, and since log|x| is locally integrable, the
function

2z
x—=y

x i / dyf () _ / dyf’ () log|x — |

is continuous for f € C! and is continuously differentiable for f € CZ.

Lemma 4.2.2 We have the formula

7 7 _ 1 (y _Z )+n2<s<x—w>a<y—w>,

X—w y—o

X—wy—o y—x
which means explicitly, for f, g, h € Ccz, that

&

X —w

P
wH/de(X) , wr—>/dyg(y)—
y—w

are square integrable, and

(x,y)—~> L(/dwh(a))ﬁ —‘/‘da)h(a))ﬁ)
y—Xx X —w y—w
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is continuous, and

N
/ f f dxdydo f (g (h(@)——— ——

wy—w
1 P 4
=/ dxdyf(x)g(y)(—/dwh(w)<_ - _))
y—X X—w YyY—o
+? / do f(@)g(@)h().

Proof We calculate

1 & &
// dXde(X)g(y)(—/dwh(w)(— - —>)
y—x X—w y—o

= 811_%// dxdy f(x)g(y)

1 X —w y—w
y_x</dwh(w)((x_w)2+82 - (y—a))2+£2>>
(x — ) (y — w) — &

= tim [ [ axavdo prgomor o (v =) +¢)

Z
— [[[ arardorrsome Lo -7 [ do @i,

X

Here, at the end, we have employed the well-known limits

. X —w P
lim =

em0(x —w)?4+e2 x—w
I ¢
im———-
el0 (x —w)? + &2

=né(x — w).

Lemma 4.2.3 We have

/dw Z i=7128(x—y)

X—owy—ow

or explicitly, for f, g € CCZ,

P P
/ / / dedydof (g () = / dof (@)g(®).

Proof We show the first expression on the right-hand side in the preceding lemma
goes to 0. Replace the function % in the lemma by h., with he(w) = h(ew) and
h(w) =1/(1 + w?). Then
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1 / Ix — o
= dweh'(ew)log
y—x ly — ol
1 - 1 1-
= —/da)h/(a))log —w/el _ [dwh’(w) log L= &%/l
y—x ly—w/el  y—x [1—ey/wl

~8/da)h’(w)/w
for e = 0 and

/da)h/(a))/a) < o0.

The variables x and y can supposed to be bounded, as f and g are of compact
support. From there one obtains the result. g

Remark 4.2.2 The equation of the last lemma is well known. The equation is the
basis of the Hilbert transform.

Proposition 4.2.5 The «, are orthonormal in the generalized sense that

{axlay) =d(x —y).

More precisely, if f € CCZ, then
/dx f@)ay € H=Cao®L*R)

and, if g € CC2 as well, then

</ dx f(x)oex

fdyg(y)ay>=/ F)g(8(x —y)
= / do f(w)g(®) =(flg) ;.

Proof Calculate

</ dx f(x)ox

_ 1
=</ dx f(x)iixz_i_nz(

/ dy g(y)ay>

1,x8,(2)+ 2/(x —52)1)‘

1 1
/dyg(y} 12 ((1,y5y(9)+9/(y—9)1>>

_ 1 !
=[d dxd
/ w/f X yf(x)g(y)\/x2+n2\/y2+n2
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@ 7
X (1 + <x8(x —w)+ —) <y8(y —w)+ —))
X—w y—o

Interchange the order of integration, use the properties of the §-function and the
Z-function, and the preceding lemma, to get

- // dxdy f(x)g(»)8(x — y) = (flg). O

Corollary 4.2.1 For the spectral Schwartz distribution we have the formula
M(z1)M(z2) =8(z1 —22)M (z1)

or,as M(x +1iy) = p(x)8(y),
pux)p(xz) =6(x1 — x2)p(x1).

More precisely, if € = (;), ceC, fe CCZ, ge CCZ, then

/dxg(X)M(X)IE)=/ng(X)|ax>(le|$)

belongs to L*, and

</ dxy g1 (x)u(xr) fdngz(X2)M(X2)>=/ng1(X)gz(X)u(X)-

Proof Use the preceding proposition and that
x> (ax§)

is a bounded C? function. O

Remark 4.2.3 Compare the last formula to the result holding for spectral families
(Eyx, x € R) namely

[ dEnsi) [ Bz = [dEwew
which holds for bounded Borel functions g; and g.

Proposition 4.2.6 The orthonormal system of the o is complete, so
[ ar e =1
or more precisely for &€ = (;) fe CCI,

x> (Eloey) eL?
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and, for & = (;), n= (i,/), f.g €L, one has

/dx<s|ax><ax|n> — (Em).

For the resolvent one obtains

R(2) :/dx

or more precisely with &, n as above

)axl,

1
(§|R(Z)|ﬂ)=/dx — (lox) (et ).

Proof The resolvent

0 0 1 1
RO=(5 raw) * (ko)) 7o 1+ F1Ra0)

is holomorphic for Im z # 0; the function (§|R(z)|n) is continuous at the boundary.
By deforming the boundary one obtains that

/ dx (E|R(x £i0)]) =:F/1_ dz (IR ).

where 1 is the semicircle of radius r joining —r and r in the upper, resp. lower,
half-plane. Then

r r

dx (§lax) (ax|n) =

3 - _rdx(g|(R(x—iO)—R(x+i0))|77)

1
ZT/ dz(€|R () In).
w1 Jr

where I is the circle of radius r. As f and g are of compact support

(EIR()|n) = flg )+ 0(z7?)

and one obtains the first assertion by taking r — oo.
Assume, e.g., Imz > 0 and put F(z) = (§|R(z)|n), then

F
F(z) = / i 8 (;‘)

where y is a small circle in the upper half-plane encircling z. By blowing y up so it
consists of the interval [—r, r] and the semi-circle I} one arrives at

P - 21( @ FO /’dxw)
1 —z _r X —7z
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In the lower half-plane one obtains similarly

o:i( ch@)—/rdxw)
2ri\Jr. ¢ —z —r xX—2z

So
1 F " F i0) — F(x —1i0
F(z)=—,</d§ © | [ g et - Fix 1)>.
2ri\Jr ¢-—z —r xX—2z
As F(¢) = 0(¢~?), we take r — oo and obtain the second assertion. O

Corollary 4.2.2 [f E,. is the spectral family of H, then

(§1dEx[n) = (§lax) (o [m)dx.

4.3 A Two-Level Atom Interacting with Polarized Radiation

4.3.1 Physical Considerations

We discuss a two-level atom with transition frequency wg. The levels are supposed
not degenerate, and have the wave functions 11 (x) for the upper level and ¥y (x) for
the lower level. We shall use relativistic units with 2 =1 and the velocity of light
¢ = 1. In these units the square of charge of the electron is e? = 1/137.

The radiation field is a system of independent oscillators labelled by A € A

A= {m:(ml,mz,mg) e, il §M} % {1,2}.

Associate to k € R3 two unit vectors e;(Kk), ex(k) such that the three vectors
k/|k|, e; (k), e2(k) form a right-handed coordinate system (a trihedron) in R3.
Choose a large number L > 0, and define
2 4
k), =kn,;j= - m w;, = K| = Tlml, e, =¢;(ky).

We have to consider the finite system of oscillators, labelled by A € A with fre-
quencies w;,, given by the creation and annihilation operators ay, ai’, A€ A. The
representation space is a pre-Hilbert space spanned by the vectors |m) = (a*)™|0),
where m runs through all multisets of A. The Hamiltonian is

Hq = Z H, = Z a)xafa;t.
reA reA
Use the notation E19 = |¥1) (| etc., then in rotating wave approximation

Hiot = Hrad + Hatom + Hint = Y _ 2.0 ), + a0 E11 + Y _(82a3.E10 + 8305 Eon).
reA A
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One has

e (2w

g =—— | —L73/2(y|p.e; exp (ik;.X) o),
nme w),

where e is the electron charge and m, the electron mass. p is the momentum oper-
ator p = (p1, p2, p3); pi = —id/dx;. If a is an estimate of the atomic radius. Then
frequency wo ~ e?/a, so

awy~ e* =1/137.

The function exp (ik; .x) is approximately constantly 1 until frequencies of the order
1/a. We mutilate g

e _
g =———\2m/w,L 32 (41 |p.ex | Wo) (i — wy),
e

where 0 < c¢(w) <1 and c(w) =1 for |w1| K wp and is O for |w| > w;. To justify
this mutilation is outside the scope of this work. Using the relation

(Wrilp/melo) = iwo(V11X|vo)

and w; ~ w(y wWe arrive at

&, = ie\/2nwoL_3/2c(wx — wo) (¥1]p-ex o).
Introduce

A= fm=nima,ma) € 2 Y " Imil < MY x (1,2,3).

We imbed C4 into CA'. If ¢ = em,j, Iesp. e;ni are the standard basis vectors of
C4, resp. C4', we map

emj > Y (em )it

j=12

This means, if we consider the elements of C4' as vector fields, we affix to the point
m the vectors ey, ;. Similar we define annihilation and creation operators by, ; and
b:;i for (m, i) € A’. We express the annihilation and creation operators indexed by
A in terms of those of indexed by A’,

- -
am,j= Y (€mj)ibm.i. Uy j = > (em ibg

Jj=12 j=1,2

This means physically, that we have introduced a fictitious longitudinal polarization.
Denote by I7(m) the orthogonal projector onto the plane perpendicular to m, then

T(m); = > (em,j)i(em, ;) = 8ir — mym;/Im|>.
j=1,2
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We have then, with ky, = (27/L)m and oy = 27/L)|m|,
Hppg = Zwm Z H(m)ilb:{l,ibm,l,
m il

Hint =Y e/2mewo L™ c(wm — o) IT(m); 1 (iE10(¥1X1¥0)ibm.1

m,i,/
—iEp (1/f0|X|W1)ib:;,,1)'
Introduce the space
X =R?x{1,2,3}.
Define the cube

Cm = {k= (k. k2. k3) : |ki — (km);| <7/L}

with the volume C = (2r/L)>. Put
bm.i = C_I/Z/dklcm(k)a(k, i)=C""2a(Cm).
For f, g € J#5(X), one obtains, since a(Cm,i) f ~ Ca(k,i)f,

(f|Hadl ) =Y 0mITm);C™ " {a(Cm.i) fla(Cm1)| f)

m,i,l/

~ Y omITm);Clakm,i) f|akm)| f)

m,i,/

~ / dk > 1) [Kl(alk, i) f|atk, DIf)

il
and finally
Hyag = / dk[k| > 1K) at (k, Da(k, 1),
il

Hi= [ dk Y e /an/ @mrc(Kl = on) 10

il
x (—iE10(¥1 [xI¥0)ia(k, 1) +iEoi (Yo x|y )iak, D).

The quantity

N =/dk2n(k)i,1d‘(k, ia(k, 1)+ Eq
il

81
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is the operator for the total number of excitations and commutes with Hio. As it
gives only a trivial contribution we just consider Hy; — woN and call it Hi, once
more. So

Hiot = / dk([k| — wo) Y IT(K);sa™ (k, i)a(k, 1) + Hin.
il
We introduce polar coordinates in a slightly modified way

Kk = (0 + wo)n, dk = ( + wp)*dwdn.

Here n € S? and dn is the surface element on the sphere S? normalized such that
sz dn =4r. As c¢(|k| — wp) = c(w) vanishes for || > w1 we have only to consider
w for |w| < w1. As we assumed w; < wo,

dk = wjdwdn,
and we may allow o to go from —oo to +o00. So for the radiation our basic space X
becomes
Xrag =R x 7 x {1,2,3},

where w € R is the frequency, n € S? the direction, and i corresponding to ¢; in the
standard basis of R is the polarization. Remark that we have introduced a superflu-
ous direction of polarization, the direction of n. We have

}ﬂm:i/dwdnwéDE:IYOUuauw,miﬁdw,nJ)
il

+/da)dnw(z)Ze\/w_o/(Zn)c(w)H(k),’J
il
x (—1E 10 (Y1 [x¥0)ia(w, m, 1) +iEoy (Yolx|¥1)ia(w, n, l)T)-

We restrict ourselves to the case of one excitation. Then we have only to consider
the cases, that either we have the photon vacuum @ and the atom is in the upper level
or the atom is in the lower level and a photon (w, n, i) is present. We restrict our
state space to the space generated by the states ¥ ® @ or Yo ® a*(w,n,i)®. So
we may use as Hilbert space

H=C®L*(Xraa, 1)

where X is now the measure on X,q given by

(Mf):i[/dwwédn }: flw,m,i).

i=1,23
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Consider the elements (c, f) € $, c € C, f € # (Xtad), Where £ (X1qq) is the
space of continuous functions with compact support, and use the notation

(e, f)=cy ®<D+/d/\f(w,n, D(Yo®at(w,n,i)®).
Then

. 0 (gl (¢
(e )| Hal ¥ (e, 1) = . ) <|g> K) (f>

with

J@

2

g(w,m, i) =ic(w) Y e—TTm); 1 (Yolx|¥1)r,
I

(Kf)(@.m i)=Y On)f(nl).
!

4.3.2 Singular Coupling

We rewrite the results of the last subsection. We consider the space
H=CaL*(RxS*x(1,2,3))

provided with the measure A given by

(klf)://dww%dn > flo.m.i).

i=1,2,3

We consider the elements of L2(R x S? x {1, 2, 3}) as vector-valued functions on
R x S?. Then § becomes

H=Co L*(RxS*,C?).
We will be studying the operator given by the matrix
g (0 @\_(0 (ev),
‘T \lg K) 7 \Uve) ARA)°

here
g(w,n) =c(w)v(n),
éﬁon(n)<wolxl¢1>,
T

(£2f)(@n) = of (0, n),

v(n) =ie
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(Af)(w, m) = IT(n)f(w, n),
K=ARA=AR =RA,
II(n);; =4;j —mimnj;
the function c is one with the properties 0 < c(w) < 1 and c(w) = 0 for |w| > wq,

and the operator A is a projector, so A> = A and Av=v.
By Krein’s formula we can calculate the resolvent

1 0 0 1 1
R“”‘z—H;‘Q>RK@J+<me)z—@RmmmﬁL@mﬂ

with

1 1 1 1
R = = =A A+ -(1-A).
k() K I_A0A o +z( )

Since

we obtain, with Ro(z) =1/(z — £2),

2 (© 0
@)= (0 ARg()A+ 10 - A))

1 1
+ <R9(1)|v(;)> m(l (cVIR2(2)).

We now perform the singular coupling limit and make the function ¢ converge to
the constant function E: E(w) = 1, in such a way that c stays bounded by E and
c(w) = c(—w). Then

c(a))2
z

(8| Rk (2)18) = (c|Ra(2)|c){V|AlV) =/dw _w<V|V)—> —inro(2)y
with

3
V=MW=/®%MMMM ?%wmww.

Here o (2) is the sign of Im z. The resolvent becomes

0 0 0 0
Re)= (0 AR_Q(Z)A) + (0 La- A))

1 1
" (RQ(Z)IVE>> m(l’ (EVIR@(2)).



4.3 A Two-Level Atom Interacting with Polarized Radiation 85

0 0
b 0% w)

is the contribution of the fictitious longitudinally polarized photons and need not
to be considered further. The expression (E| is the linear functional f +— (E|f) =
[ dwf (w), and E = |E) is the semilinear functional given by (f|E) = (E| f).

For the time development we obtain, similarly to Sect. 4.2.4,

(U Uoni
U(t)_(Ulo U11>

The term

with

Up=e""",

t .
Uy = —i / dre Y ITI(EleT 20 @ (),
0
t .
U10=—i/ dr1e T EYe Y @ |v),
0

U =2 g A— / / dydipe 20| Eye ™V (=) (£ 1o g vy (v]
O<ti<tr<t

+1® {0 —A).
‘We have

and
e 1Hot — (1 0 ) .
0 Ae™A+1-A
Then
V() =y )
is given by
Voo =e ",

t .
V01 = —lf dlle_ny(t_tl)<E|e_LQtl & (V|’
0
t .
Vio = —iv 27[/ dtlel'Qtl |E)€77Tyl1 ® |v),
0

Vii=1-— ff dt1dre 2| Eye Y (071 (e 719N @ |y (v].
O<ty<ty<t
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That reads in the formal time representation, as explained in Sect. 4.2.4,
Tyt

Voo=e """,

t
Voilt) =—i¢2n/ dt1e ™8 (1 — 1) (v,
0
t
(t|Vio = —i/ dné(t — t1)|E)e_ﬂytl X |v),
0

(lViit) =8(t1 — 1) — 27 / / dyd68 (g — 11)e ™ 2781y — 1)
O<ty<ty<t

® [V)(v].

The matrix element Uy describes the decay of the upper state. The transition
probability is

)

2ry =e —} Volx|¥1)

in agreement with Landau-Lifschitz [28]. The element Uj( represents the sponta-
neous emission. The integrated emitted tensor intensity, in direction n and with fre-
quency w, for all times between 0 and oo, is

J(w,n) = [v(m))(v(n)|

w2+ 2,2
1
@47y 4

w3
20|17(n)(1ﬁ0|X|¢1))((¢1IXllﬂo)U(n)I

The fraction of the emitted total intensity in direction n is

sin? ¥

3 (1 - |<w1|n(n)x|wo>lz> _3

/ dotrace(J(e. m) = g Wikl 2 )~ 8x

where ¥ is the angle between n and (Y1 |x|vq).
The element Uy describes absorption, and Uy describes undisturbed transmis-
sion and scattering.

4.3.3 The Hamiltonian and the Eigenvalue Problem

The Hamiltonian corresponding to the resolvent R(z) is

(0 (Ev|
“\IVE) AQA4A)°
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where the definitions of E and 2 have to be adapted from Sect. 4.2.2 to the vector
case here. The domain of H is

D =R()%

1 0
= C —|—
{ (R.o (Z)EV) (R.(z (Z)Af1>
0
ceCf,he > (RxS*CY)¢.
+((1 —A>f2> ceChib el (Rx8.C)
One checks immediately that
HR(z) =R(z)H =—1+zR(2).
We discuss the eigenvalue problem in the same way as in the previous section. One

calculates in a similar way, using the fact that for

giz(?), ri € C, fl-eCc!, heCCI, xeR
i

the expression
[ axhwire o)
is well defined.

Proposition 4.3.1 We have, given

&= <Ci>, cieC, feCl,
f;

that, for z = x + 1y, the spectral Schwartz distribution

1-

;3z(§1 [R(2)|82) = (§1lp(x)162)8(y)
with

3
1w(x) = pr+ pi+p;

and

l—| ) ol |05>——1 ﬁ P

Px Oy ) (O |, x )
/ ) + —|E
x2+JT2y2 x| x)/\/? \/_J’x r2| )

, (0 0 L WM
px_<0 q|8x><8x|)’ =4 N

pi=(1—A)x).
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In the same way as before, we obtain the orthonormality relations
(ax|ay) =d8(x —y)
and
PPy =8(x = y)8ijpi (x).

We also have completeness expressed by

/dx wx)=1.

4.4 The Heisenberg Equation of the Amplified Oscillator

4.4.1 Physical Considerations

Consider a quantum harmonic oscillator, with the usual creation and annihilation
operators b1 and b, in a heat bath of oscillators given by a):", a,, A € A, with the
Hamiltonian

Hy=—wob™b+ Z(a)o + a),\)a;ra,\ + Z(g“”‘b + Ela;rlﬁ).
reA reA

This Hamiltonian, however, is not bounded below, so it cannot describe a real phys-
ical system. Nevertheless, it does enable one to discuss the initial behaviour of su-
perradiance, and can be used as the model of a photon multiplier. We now sketch
these ideas.

We consider N two-level atoms coupled to a heat bath. The Hilbert space of the
atoms is (C2)®N . The Hamiltonian is

N _ N —1)2—= _(N
HN=U3( )wo+Z(wo+a)x)a;‘a;\+Z(N 1/2&04(_ )+N 1/2gxai )ar)

with

N, 21® @1+ +1®--®1Q0,

1

the sum of terms with o; in all possible positions in the N-fold tensor product, and
the spin matrices are as usual given by

10 1 (0 i /(-1 0
. 0 0 . 0 1
oy =0] +10p = 1 ol o_ =01 —10p = 0 0)

N . . .
The operators oi( ) obey the spin commutation relations, and (C*)®V can be
considered as a “spin representation space”, or, in other words, as a representation
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space of the group U(2). Any irreducible representation space is invariant under the
operator H.

In the case of superradiance, at + = 0 all atoms are initially in the upper state
((1)) Then, due to spontaneous emission, one atom emits a photon, the radiation
increases the probability that another atom emits a second single photon, etc. Thus
an avalanche is created, which dies out when the atoms of a majority of the N atoms
are in the lower state ((1))

. . ®N . .
For ¢t = 0 the state of the atomic system is ((1)) = Y¥/n/2, the highest weight vec-

tor of the representation, and successive applications of o™ create an irreducible
invariant subspace spanned by ¥,,, m = —-N/2, —N/2+1,..., N/2. One has

(N) (N) N (N 12
03 Ym =mYm, oL Ym= (3(3 + 1) —m(m =+ 1)) Yml-
Put o = ¥v/2—¢; then

1/2

—1/2 (N)wk —1/2(Nk—k2+k) <pk_1—>«/E<pk—1,

N—l/zo@(pk =NT2(Nk+1) =2 +5) o1 > VE+ T gesr.

For N — oo the operator N~/ 26™) becomes the creation operator bt and the
operator N~/ ZO'(N) becomes the annihilation operator b. Shifting the operator Hy
N
by adding woN /2 we obtain Hy. By choosing, for t = 0, the vector ¥y /2 = ( )®
we would have arrived at the same irreducible representation, and an analogous

procedure would have ended with the Hamiltonian for the damped oscillator.
We split H into two commuting operators Hy = H + Hj with

H)= Z waa; a; + Z(gxaxb +ga;bt),

reA reA
H{ = wo (—b+b +> aiax)
reA

The time dependence due to Hy is trivial: it describes a fast oscillation modulated
by the time development due to H;. We disregard it.
Put

n(b%) =exp (iHyt)b™ exp (—iHt),

ni(ay) = exp (iHt)ay exp (—iHgt).

lg Tlt(b+)> (ﬁt(b+)>
ide (n,(ak) AZ ne(ay)

Then
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(0 (gl
H‘<—|g> 9)

where |g) is the column vector in C# with the elements g;, (g| is the row vector
with the entries g,, and £2 is the A x A-matrix with entries @;8; »/. As in the
first example of Sect. 4.2.1, we introduce a continuous set of frequencies. Then |g)
becomes an L2-function and £2 the multiplication operator.

with

4.4.2 The Singular Coupling Limit, Its Hamiltonian
and Eigenvalue Problem

We recall the discussions of Sect. 4.2.2. We again have the Hilbert space
H=CoL*®)
with the scalar product
{(e. DI, g)>=50/+/dX?(X)g(x)-
In the last subsection we ended up with the block matrix
0 (gl>
H, = ,
(—|g> 2

where |g) is an L2-function and £2 is the multiplication operator. The matrix H is
not symmetric but does satisfy the equation

JHyJ = HS

()

Using Krein’s formula we obtain the resolvent R, (z) of H, as

with

1 0 0 1 1
—m, @)= (0 #o0)*(“rotomm) o (lRe @)

with

2
8@,

Ce(m)=z—(glRe(DIg) =2~
I—w
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We perform the so-called singular coupling limit. We consider a sequence g; of
square-integrable functions, converging pointwise to E, and uniformly bounded by
some constant function with the property

gn(@) = gn(—w).

Then, for fixed z with Im z # 0, the resolvents Ry, (z) converge in operator norm to

0 0 1 1
Ra= (o Rsz(z)) * <—R9(Z)IE>> e 1 (EIRe@).

Recall the spaces £ and £7, the functionals (E | and |1§" ), and the operator 2 from
Sect. 4.4.2. Define the operator

H:CoL—>Coel
a=( 9 (El
—|E) £

We have to distinguish between right and left domains Dy, resp. D;, of the oper-
ator H corresponding to R(z):

Di=9R@) ={tcCoL:&=c(1,(EIRQ@)+ (0, (fIR@)},

1 0
D:R(z)f)={§e©®£:é=c< )-I—( )},
' —RQ)|E) R f
withceC, f € L2. The Hamiltonian H is the restriction of H to Dy, resp. D,. So
(E|H = (£|H,

Hig) = HIg),

for & € Dy, resp. for & € D,.
The time development operator corresponding to R(z) is for # > 0

(U Un
U(t)_(Ulo Un)

with
Up =¢™,

t
Uo =i/ dne™ T (EleTih
0

t .
Up = —i/ dre 20| Eye™
0
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Uy =e 90 4 f f dr1dre 200 | g)e™ 271 (Fle—iRh,
O<ty<tr<t

Put
0 0
w=(; o)
and
V() =y ).
Then

Voo =¢™,

t
Vol =i/ dr eI (EleTi
0
l .
Vio = —i/ dr e E)e™,
0

Vii=1+ / / dtydrpe' 2| E)e™ 271 (E |20
O<ti<tr<t

and, in the formal time representation of Sect. 4.2.2,

Voo(t) =e™,

t
(Vo)1) =iem'" [ anem s ),
0

t
T|Vi =—i ! 18(ty — T)e™'1,
(t1Vio(0)) = —i(27) /2/ dn8(1 — 7)e™
0

@IV Ot = 8(z1 — 1) — 21 / / dr1d0d (12 — )™ 8 (1 — 1),
O<ty<ty<t

Proposition 4.4.1 The resolvent R(z) is holomorphic outside the real line and
away from the two simple poles *ir. The spectral Schwartz distribution M(z) =
(1/m)0R(z) has the form

M (x +1iy) = uw(x)8(y) + pin8(z —im) + p—iz8(z +im)

with

1
w(x) = 7 -(R(x —i0) = R(x +1i0)) = |orz) (Bu,
1

_ (2, 12 1 0
o =) (L) +x ()
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(2, -2 Zz
o= ) (= (1L )+ x40 )

and

D+in = |@+iz ) {B+ix |,

1 1
lottin) = (_ j:inl—.(z |E))’ (Bxin| = (1, (mm)-

Proof Write

1 .
(—R_Q(x iiO)lE)) =a+irb

with
1 0
= G N b: )
“ (—xf”g |E>> (w)
and
(l, (E|R(x % iO)) =d Find
with
P
"=(1,(E , b’ = (0, (8
o= (1e25) (0. 5]
Then
1 . .
—_(R(x —10) — R(x —|—10))
2mi
=bb + 1 (a —inb) (a' +inb") — (a +imb)
2mi X +im x —im

= x2-|——712(a —{—xb)(—a/ —i—xb/) = Joty ) (Bx|.

The terms p.j, are the residues of R(z) at the points *£ir, so, e.g.,

. . I 1
pin = lilp @ —imIR(@) = (—#m) (1’ - sz)

It is easy to check the bi-orthonormality relations
(ax|By) =d(x —y),
(x| Bin ) =0, (axir|Bx) =0,

(a:l: iﬂ'ﬂiin’> = 11 (aj:iyr|ﬂ¢in> =0.

93
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Similarly to the discussions in Sect. 4.2.5, one proves the completeness condition

/dzM(z): 1.

4.5 The Pure Number Process

The pure number quantum stochastic process restricted to the one-particle case is
mathematically the easiest of the four examples, but it does not seem to have a direct
physical meaning. We consider the Hamiltonian

H= /da)a)aT(a))a(a)) + (/ dw §(a))aT(a))> </ dw g(w)a(w)),

with g € L>(R).
The underlying Hilbert space is the Fock space. The number operator

N:/dw a’(w)a(w)

commutes with H. The restriction of the Hamiltonian to the one-particle space
yields the operator defined in L2,

H, = 2 +1g){gl.

A slight modification of Krein’s formula is needed, and yields

1 1
= Ra(3) + ———— =~ Ro()lg) (8| R (2).

R =
$9D="q (glR2(2)g)

We perform the so-called singular coupling limit. We consider a sequence g,
of square-integrable functions, converging to E pointwise, uniformly bounded by a
constant function, with the property g, (w) = g, (—w). Then, for fixed z with Im z #
0, the resolvents R, (z) converge in operator norm to

1
R(z) =Ra(2) + HTU(Z)RQ(Z)|E)(E|RQ(Z)

with o (z) = signImz. The corresponding unitary evolution has, for ¢ > 0, the form

. t . .
Ut)=e 9" / dt1e 1| Ey(Ele 920
0

1+im
Put, for ¢t > 0,

Ut)=e v (),
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so that

t . .
Vi)=1—i / dn e W |EY(E|e”¥h,

I +im 0

In the formal time representation we have

(RVOLf)=(hlf) =1 /0 drih(n) f (1),

I +irm
or, in other words, V (¢) becomes the multiplication operator

2mi
1+im

(Vinf)@ = (1 - l[o,t](f))f(f)~

This unitary group was found by Chebotarev [14].
The domain of the selfadjoint operator H is a subspace of the space £ defined in
Sect. 4.2.2. It is

D= R@LA(R) = {RQ(Z)<|f> + wm) fe LZ}.
+io(z)w

The Hamiltonian H is the restriction of
A=02+|E)E|
to that domain [42]. With the methods used before we calculate the spectral
Schwartz distribution M (x +1iy) = u(x)§(y) with
1 . .
p@x) = 5—(R(x —i0) — R(x +i0)) = lorx) (e,

i
_ n-12( &
o) = (1+77) <x——Q|E) + |8x)>.



Chapter 5
White Noise Calculus

Abstract The creation and annihilation operators cannot be multiplied arbitrarily.
Only special monomials can be formed, which are colled admissible. Normal or-
dered monomials are admissible and products of several normal ordered monomials
depending on different variables are admissible, too. By a variant of Wick’s theorem
it can be shown, that any admissible monomial is the linear combination of normal
ordered monomials: The coefficients are products of point measures. We prove the
representation of unity by monomials of creation and annihilation operators and
investigate the duality, which changes creators in annihilators and vice versa.

5.1 Multiplication of Diffusions

Before introducing white noise, we have to offer some preliminary explanations. We
define for any locally compact space X, .# (X) to be its set of positive measures.
Let X and Y be two locally compact spaces. A continuous diffusion is (following
Bourbaki, Intégration, Chap. 5 [11]) a vaguely continuous mapping

K:X—> M (Y): x> Ky.
Using the old-fashioned way of writing we have
K =Ky (dy) =K (x,dy).

Vaguely continuous means that the mapping x € X — [ «(dy) f(y) is continuous
forany f € 2 (Y).
We consider three types of multiplication of diffusions:

1. Let X1, X2, Y1, Y> be four locally compact spaces, and let
K1: X1 — My (Y1),
Ky : Xo — My (Y2)

be continuous diffusions, then we can have as the product

kX1 XX2—>e//+(Y1 x Y2),

W. von Waldenfels, A Measure Theoretical Approach to Quantum Stochastic Processes, 97
Lecture Notes in Physics 878, DOI 10.1007/978-3-642-45082-2_5,
© Springer-Verlag Berlin Heidelberg 2014
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K (x1, x2; dyr, dy2) = k1 (x1, dy1)ka(x2, dy2)
or
K(xy,x2) = K1,x; ® K2, x5,

Let X, Y, Z be three locally compact spaces and

k1: X —> M (Y),
ky:Y —> M (Z)

be continuous diffusions, then we can take as a second alternative product

k:X— M (Y X 2Z),

i (x; dy, dz) = k1 (x, dy)ka(y, dz).
So
// K (x;dy, dz2) f(x, y) = / K1 (x, dy) / K2(y,dz) f (¥, 2).
This product is familiar from probability theory. If « (x, dy) is the probability of

transition from x to y and k7(y, dz) is the probability of transition from y to z,
then « (x; dx, dy) is the transition probability from x to y and z.

. Let X, Y, Z be three locally compact spaces and

k1 X —> M (Y),
ky: X — M (Z)

be continuous diffusions, then we can take as the third product

k:X— M (Y X Z),

k(x;dy,dz) =x1(x,dy)ka(x,dz).
So

Kx =K1,x QK2 x.

Using the positivity of the diffusions it is easy to see, that all three types of

multiplications again yield positive continuous diffusions. We shall not introduce
different symbols for the multiplications, but rely on the different notations using
differentials to make clear which is in play.
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5.2 Multiplication of Point Measures

Using Bourbaki’s terminology we denote by & the point measure at the point x € X.
So for f € # (X) we have

/ ex(dy) () = F0).

We consider the diffusion
e:x€Xt> ey €M (X).

We have the three ways of defining the product of two point measures. If the four
variables x1, x2, x3, x4 are different, then we may first define the tensor product

Ex; (dXZ)SX3 (dx4) =&y ® Ex3 (dx25 dx4)7
/ / 2, ® £y (A, drg) £ (2, x4) = £ (x1, 33).

Then a second way is
&x, (dx2)ex, (dx3) = Ey, (dx2, dx3) = &x; @ &y, (dx2, dx3),
// Ey (dx2, dx3) f(x2, x3) = f(x1, x1).
The third possibility is
&y, (dx2)ex, (dx3) = &x; ® &y, (dx2, dx3).

That the last two products amount to the same here is a property of &,. We omit the
variable x and write only the indices, and use the notation

ex,(dx;) =¢e(b,c) and Ey (dxi,dxp)=E(1;2,3).
We want to define the product of
{eisc):i=1,....,n}.
Consider the set

S = {(b17 Cl)’ s (bl’h cl‘l)}?
where all the b; and all the ¢; are different and b; # ¢;. We introduce in S the
structure of an oriented graph by defining the relation of being a right neighbor

b0y (b, ) =c=b.

An element (b, c) has at most one right neighbor, as (b;, ¢;) > (b}, c;) and (b;, ¢;) >
(b, cx) implies b; = by and j = k. So the components of the graph S are either
chains or circuits.
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We have to avoid the expression €, (dx). This notion makes no sense and if one
wants to give it a sense, one runs into problems. If X is discrete, then ey (dy) =6y
and &, (dx) =6, = 1. If X =R, then &,(dy) = §(x — y)dy, and if one wants to
approximate Dirac’s delta function one obtains &, (dx) = oo.

Consider a circuit

1,2),2,3),...,(k—2,k—1),(k—1,1).
It corresponds to a product

e(1,2)e(2,3)---etk —2,k— De(k —1,1).
Integrating over xz, ..., xy—1 one obtains (1, 1), which cannot be defined. So in
order that [ [7_, £(b;, ¢;) can be defined, it is necessary that the graph S contain no
circuits.

On the other hand, if (1,2), (2,3),...,(k—2,k— 1), (k — 1, k) is a chain, then
using the second form of multiplication we have

e(1,2)e(2,3)---e(k — 2,k — De(k — 1,k)

=E(1;2,3,...,0) =e2% D(dxz, ..., dxp),

/f E(1:2,3,.... k) f2,3,.... k) = f(x1,...,x1).
2,3,....k

Use the notation S_ = {by, ..., b,} and S+ ={c1, ..., cy}. If S contains no cir-
cuits, then any p € S_ \ S is the starting point of a (maximal) chain

(p, Cp,l)a (Cp,lvcp,Z)a cee (Cp,k—l’Cp,k)-

Use the notation 7, = {cp.1,...,Cp k}. We have

e(p,cp,1)e(cp1,¢p2) -+ &(Cpi—1,Cpr) = E(p;mp)
where explicitly
H#
E(p;mp) =ex, " (dxr,).

Finally we adopt

Definition 5.2.1 If S contains no circuits, then

n

Es=[]e®ico= ] Ewpimp.

i=0 peS_\S,
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5.3 White Noise Operators

Recall the generalization of the creation operator a™ to the diffusion ¢ : x — &, and
the definition

(@t (2(dy)) £) o) = Y 2, (dy) £ (o)

CEn

‘We write for short, if b is an index,
at(e(dxp)) =at(dxp) = a .

The annihilation operator a(x) = a(ey) is the special case for the annihilation oper-
ator a(v) (defined in Sect. 2.3)

(a(ex,) f)xa) = (a(xp) f) (Xa) = f (Xatb)-

‘We write for short

a(ey,) = ap.
Ifa={by,...,b,}is aset, then
+_+ + + _
Ay =ay ---a, , ay =1,
Ay = ap, * -~ Ap,,, ag=1.

We shall be dealing with functions on the space X, which we recall is the space of
all tuples of elements of X:

X=W +X+X>+---.
Write for short
K = K (X).
Recall the function

d(x)=1 forx=40,

PeX; ON)= {<15(x)=0 for x %

and the measure
Veds(X);, Y(f)=[fO.
We define
by =a P,

and then

Dy =@
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and, for o # 0,
Dy (xy)=¢e(v,a) forvNa =40,
where
S(U, O() _ Zh:a—bu 1_[?:1 E(h(b,'), b,’) if #a =~#U,
0 otherwise.

More explicitly the last expression could have been written

n
Z HS(Xh(b,-), dxp,)

ha—vi=1

showing the dependence on the variables of X. Here the sign — signifies a bijective
mapping. So the sum runs over all bijections from « to v. We call @, a measure-
valued finite-particle vector. So @, is a continuous diffusion

Dy X — X

Extending ¥ we have

lI/aUaId? =e¢e(v, a).

Assume we are given a set 0 = {s1,...,8,} and aset S = {(b;,¢c;):i=1,...,n},
where all the elements b; and c¢; are different. Use, as above, the notation S_ =
{b1,...,by} and S+ ={c1,...,cn}, and assume that o N S = (). We extend the

relation > of right neighbor from S to the pair (o, S) by defining
s> (b,c) <= s=b.

If the graph (o, S) is without circuits and (¢ U S4 U S_) N v = @, then for any
f v — o, the graph

SuU {(c,f(c)),ce v}

is cycle-free, so there are no problems in defining Es®, = @, E.

The graph naturally is made up of a collection of chains, some of which begin
with an element in o and some of which do not. We break up the nodes in the
graph into groups according to the chains in which they are. We carry along the first
element in the case of chains that begin in o. All the rest of the elements in a chain
must be target elements in some edge for the relation >, i.e., in S;. Formally, we set
this out in a lemma.

Lemma 5.3.1 The set of components of the graph (o, S) is
I'=r,)=n+1>,

Fl = {{Sa (s7 cS,l)v (CS,IVCS,Z)v ] (CS,kJ—lch,kAv)}; NS 0}7
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D={{, c0), (1 e2)s o (Cop—ts cop) }i 1 €S-\ (S +0) .

Put
& =1{s,¢5.15...,Csk,} forseo,
wr=A{ct1,... Crk,y forteS_\(S4++0),
=S54 +o0,
0=S_\(S++0).

Then

T ZZES +Znt.

s€Eo teo

Note that 7 is made up of the nodes which are in o, or are second components
of pairs; p are those nodes which are not connected to o by a chain. This partitions
the chains into two types. The physical reason for these considerations is that there
are the chains of interactions connected to the vacuum and those which are not.

So &, E is a continuous diffusion

@, Es: X x X — My (XT),

o Es(xy+x0)= Y []EC &) [[EC ).

f;u—pa' CEV teo
Definition 5.3.1 We denote by ¥, - , the additive monoid generated by the ele-
ments of the form @, Eg, such that 0 N S = @ and the graph (o, S) is circuit-free,
and that
0=S_\(Sy+o0), =358+ +o, n=#o.

We use the corresponding notation
Gro=P%n0-
n

We define for ¢ ¢ o, using a,® =0,

acdy = ZS(C, b)DPs\p,

beo

aj_éo =P,
and obtain for b # ¢, b,c ¢ o,

S S
a,a; s =a;a, Py,
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apac Py = acap Py,

a;,aj@a =¢eb,c)Ds —I—ajabd’lg.
Proposition 5.3.1 Assume
f = @a ES S gn,n’,g'
Then, for ¢ ¢ w, we have

(aj¢o)ES S gn+l,n+c,g\c

and we can define

Ifc ¢ w+ o, then
(a.Py)Es € gn—l,n,g+c
and we can define

acf =(a.Ps)Es.

Proof We only have to prove that there are no circuits created for the definitions to
be good ones.

The graph of @, Es is (o, S). Its set of components is I” = I'] + I as above.
Assume ¢ ¢ 7 and consider (a @, ) Es. The corresponding graphis (S, 0”) = (o +
¢, S). Denote by I'" = I'{ + I'; the corresponding set of components of (S, 0").
There are two cases:

(@) c ¢ S_,inwhichcase I'|l =I't +{c}, I} = I, and 7’ =7 + c and ¢’ = ¢.
(b) c=1te S_, sothat

Fl/ = F] + {t9 (ta Ct,1)5 (Cl,la Cl‘,z)a AR (Ct,kj_17 Ct,kt)}’
L=\ {(t, 1), (cr1sce2)s - (Cri—1. Crr) )

andn’=m+cando' =S"\ (o' +5,) =0\ {c}.

In both cases the graph (o + ¢, S) contains no circuits and (a;F @, )Es is defined;
we set

af (@5 Es) = (a) ®5)Es.

Assume ¢ ¢ w + o and consider (a. P, )Es. It consists of a sum of terms with a
graph of the form (§”,0"”) = (o6 \ b, S + (c, b)). Denote the corresponding sets of
components by I'{’, I';’. Then we have

Flﬁ = Fl \ {b9 (bclvbcz)’ cees (bck,pbck)}:
Fz// = F2 + {(C,b), (bclvbcz)s R (bck,pbck)}

and 7" =7, 0" = o0 + {c}. The graph (¢”, §”) has no circuits. O
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Definition 5.3.2 A finite sequence

W= (afn",.. aﬂl)

g
with indices cy, ..., ¢; and ©¥; = &1 and the usual

s |af forv =41,
¢ a, ford=—1

is called admissible if
i>j] = {Ci;ﬁCjOI‘{CiZCj andz?,-:l,z?j:—l}}.

So W is admissible if it contains only pairs (not necessarily neighbors) of the
form (a?, ag ) with ¢ # ¢/, or (a, a;) and no pairs of the form (ac, a.), (a), al)
or (ac, al).

If W is an admissible sequence, define

o(W)={c1,...,cn},
wor(W)={c;,1<i<n:¥=+1},
o_(W)y={c,1<i<n:v=-1}.

If
W= (aﬂ"

R

ag))

is an admissible sequence we call

— 49 41
]\4_acnf1...ac1

an admissible monomial.
The following proposition shows that iterated creators and annihilators can be
defined in a suitable way.

Proposition 5.3.2 Assume

W:(ai”,...,acﬂll)

to be an admissible sequence. Assume disjoint index sets w and @ are given and that
CU+(W) N = @,
o_(W)N @ +o)=90.

Define, fork =1, ..., n,

ck ey )
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Set mop =1, 00 = 0 and

e =1 + o+ (Wi),
ok = (0 + o— (W) \ w4 (W)
where for the sets a and B
a\p=a\(aNp).
Then we have for the maps of Proposition 5.3.1

P .
Aey Yo = Yo

and for the corresponding iterated maps

_ U 1.
M=a"---a, Yo=Y o

with
7 =1 +w (W),
o' =(0+o_(W))\wr(W).
Proof Forl =1, ..., n use the shorter notation w; = w(W;) and w4+ = w+(Wy).

We carry out the proof by induction. The case of one operator is trivial. Assume
that we have proven the theorem for up to kK — 1 operators. Assume ¥ = +1. In
order that a:,; be defined, cx ¢ mr—1, in the notation given in the theorem’s statement.
But ¢ ¢ m by assumption and c; ¢ w4 x—1, since Wy is admissible. So we have a

mapping
a:; G o > G +enoni\ck
Now 7y + ¢k =7 + w4k =7 and
0k=1\ ¢k = (0 + w—x—1) NCoy k-1 NC{cx} = (0 + w— k) NCory 1k = 0k

aSw_ 1 =w_ and Wi k—1+Ck=wq .
Assume now, that ¢y = —1. In order that a., be defined,

Ck € -1 +0k—1 C T + 0+ wi_1.

But ¢x ¢ m 4 o by assumption and c; ¢ wk—1, as Wy is admissible. So we have the
mapping

Ao+ Yr_t.ox1 = Gmiron-1 -+
But w4 = w4 k-1 and

T =T + Wg—1 = Tg—1



5.4  Wick’s Theorem 107
and

ok-1+cr = (@ +w_k-1) NCwsi—1) U{a} = (0 +w_ 1) NCwp i =0k

as Ci ¢ D4 k—1- O

5.4 Wick’s Theorem

We prove a theorem analogous to that of Sect. 1.3 and to Proposition 1.7.2. The
general theorem of Sect. 1.3 cannot be applied, as the multiplication is not always
defined. But the ideas of our proof are borrowed from there.

Assume two finite index sets o, 7 and a finite set of pairs S = {(b;, ¢;) : i € 1},
such that all b; and all ¢; are different and b; # ¢;. We extend the relation of right
neighbor to the triple (o, S, T) by putting for (b,c) € S,t €t

b,c)pt<=c=t.

Consider a triple (o, S, 7), 0 N7 =@, and two finite sets v, B such that the three sets
o US;US_Urtand v and B are pairwise disjoint. As

(afa: @) (By=" D e(r,v)e(Bo +v2)

v1t+uvy=v

we find that the product (aja,@u)(,B)E s is defined if the graph (o, S, 7) is free of
circuits and we define the operator

+ + +
aja-Es=a, Esa; = Esa; a;

that way.

Consider an admissible sequence W = (ag”, e, acﬂ,‘) and the associated sets
w4, w—. We define the set B(W) of all decompositions of [1, x], i.e., all sets of
subsets, of the form

p={p+.p—. {gi.ritier},
[1,n] =p4+ +p- +Z{qm’i},

iel

p+Cwy, p-Cw_, gi€Ew_, i €Ewy, ¢; >1j.

Lemma 5.4.1 Assume W to be admissible and p € 3(W). Then the graph (o, S, 7)
with

o={cs:s€py}, S:{(cq,.,crl.):iel}, T={c:tep_}

has no circuits.
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Proof Let (cq, cr) > (cy/, ¢p7), then ¢, = ¢y and r > q' as W is admissible. By the
definition of p we have ¢ > r and ¢’ > r’, so ¢ > r > g’ > r/, and if we have a

sequence (Cq;, Cr ) >+ - (Cqy» Crp ), then gy >rp > -+ gy > rpandas ¥ = —1, ¥ =
+1 we have ¢, # ¢, as W is admissible. This proves that S is without circuits. For
the other components of the graph one uses similar arguments. 0

Definition 5.4.1 For p € T(W) we define

Wi =[] et [etcqcr) [T -

sepr el tep_

Theorem 5.4.1 (Wick’s theorem) If W is admissible and if M is the corresponding
monomial, then

M= Y W],
pEB(W)

Proof We proceed by induction. The case n =1 is clear. We write for short p; =
(qi,ri), e(c(pi) = €(cq;, ¢r). Assume
V:(aﬂ” . aﬂl)

cn 0t Yo

to be admissible and set

— U A
N=a, ---a..

Consider W = (ac,,, V) and define a mapping ¢ : ‘B(W) — P(V) consisting in
erasing n + 1. Then n 4 1 may occur in one of the p;, say in p;,, or in p_. In the first
case

o_p= {p+ + {rig}, Pidienigs P—}
in the second case

o_p={p+. (0)ier, p—\{n+1}}.

Assume
a={ar. @)jes 9-} €B(V)
then
¢ la={p:op=q)={p?.p".1eqy}.
p@ ={ar. @)jes.a- +n+1}},
PO ={q s\ 1. (@))jes, (n+1,1),q-}.
Consider

e, LV]g=ac,., 1_[ a;‘t Hg(c(qj)) 1_[ A,

SEq+ jeJ teq—
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= [« []eCcw@) [T e

S€q+ jeJ teq_+{n+1}

+ Z 1_[ a;t Hs(c(qj)s(cn+1,cl) 1_[ de,
leqq seqy\l jeJ teq_

= ) LWl

peg”!(a)

Finally
G N="D" aq lVI= Y Y (W= ) (Wl
qeB (V) a€PBV) pep~! (q) peP(W)

Consider now W = (aj‘n+I , V) and define a map ¢4 : PB(W) — PB(V) consisting
in erasing n 4 1 then

prp={pr \{n+1}, Gier. p-}.
o la={ar +{n+ 1} (@)jes a-+},
at LVquLWJ(pllq.

Cn+1

By the same reasoning as above one finishes the proof. g

5.5 Representation of Unity

We extend the functional ¥ to &, . , by putting

1 foro =40,
Vo, = .
0 otherwise

and

Wb, Es = (W dy)Es.

Definition 5.5.1 Assume
to be admissible and

Then we define

(My= Y (W],

pePBo(W)
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Here Bo(W) is the set of partitions of [1, n] into pairs {g;, ri}i=1,..,n/2 such that

q1 >ri, 0y =—1,9, =+1, and

,,,,,

LW1p =] e®i.cn.

1

If n is odd or PBo(W) is empty, then (M) = 0.
As a consequence of Wick’s Theorem 5.4.1 we obtain

Proposition 5.5.1 We obtain

MDYD) =Y MD = 0 ljfl?1+...+19n;£0’
(M) lfﬁ1+”'+ﬁn=0.

If M is admissible, then
(M®p) () = WagMay ® = (agMag).
We shall use this notation very often.

Theorem 5.5.1 If M = MM is admissible, then
(M) = / Aa(Maaf )aaM).
[04

Proof Assume

M=a’"...g"

Cn c?

I/ Vk

My=a."-- ag’s
Uk 91
My=ac, ---a..

We prove the theorem by induction with respect to k. For k = n we have

M) f =,
WataaMd = (M) fora=
0 otherwise.
Integration yields the result. Put M}, = alr.. -ai{‘jll . Assume ¥ = —1. Then

/Aa(Mga;)(aaMl):/Aa(Méacka;)(aaMﬁ

o

_ / Ao 3 (MhaZ,)aaMi)e(cx, b)

bea



5.6 Duality 1
=/Aa/(Méa;>(aa+hM1)8(Ck,b)
o b

= / Aa(Mja} Nagac M1).
o
In a similar way one proves

/ Dol Ma Yawal My) = / Dol Msa af ag M), -
o

o

5.6 Duality

We fix a positive measure A on X, and instead of writing e(A) we shall just continue
to write A when there are indexed variables like x,, and so by abuse of notation

e(1)(dxy) = A2%(dxy) = A(dxg) = A(ar) = Ag.

We define the measure A on X* given by
/A(l,...,k)f(l,...,k)

=/A(dx1,...,dxk)f(xl,...,xk)=[A(dx)f(x,...,x).

So we have
A(De(1,2)---etk—1,k)=A(,2,...,k).
Assume

W= (aﬂ” .. aﬁl),

Cp? MEare |

to be an admissible sequence with 1 + - - - ¥, = 0. Define as usual w1 (W) = {c; :
¥; = &1}. Recall from Theorem 5.4.1 that

(My=") LWl
pePo(W)

Here P (W) is the set of partitions of [1, n] into pairs {g;, r;}i—|
q1 =T, ﬂt]i = _]9 ﬂri = +1, and

n/2 such that

,,,,,

Wlp =] e@i.cn.

1

Call S(p) the graph related to p and I"(S(p)) the set of components of the graph. To
any s € S_(p) \ S+(p) there is associated a component. As

S-M\S+(p) =0 (W) \ o (W) =0
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for any p, we obtain

(Mr@)= Y Whre= Y, ] am.

pePo(W) pePo(W) yel'(S(p))

Definition 5.6.1 Assume
D o
W= (acn , ...,aCll),

to be an admissible sequence, then define the formally adjoint sequence by
wt = (aiﬁ‘ . ,aiﬁ”).

C1 Cn

If M is the monomial corresponding to W, we denote by M™ the monomial
corresponding to W+,

W is admissible as well. Using the symmetry of A one sees that

Theorem 5.6.1

(M)A (0- (W) \ @4 (W) = (MF A (0p (W) \ o (W)).



Chapter 6
Circled Integrals

Abstract The circled integral will be needed to treat quantum stochastic differential
equations. We solve a circled integral equation, introduce the class €', which has
remarkable analytical properties, and show, that the solution is a %' function.

6.1 Definition

We use the notation R for
R={#) +R+R>+.-..

We provide R with the measure e(A) induced by the Lebesgue measure A, and write
for short e(A)(dty) = dt, = Ay So for a symmetric function

1
/Aaf(ta)dta:f(w)‘i‘zﬁ/_“/ dty---dty ft1, ... tw)
= v n

=f(@)+2/~-/ dty - dty f (11, ..., 1)
n=1 <<ty

Definition 6.1.1 Assume given a Banach algebra B and a function x

x:R xRt = B,
@t wi, ..., we) = x (Wi, ..., wi)
symmetric in any of the variables wi, ..., wg, and locally integrable in norm with

respect to the Lebesgue measure on R x 91%. Let there be given a Lebesgue inte-
grable function f : R — C. The circled integral § J(f)x is defined by

J
<\¢\ (f)'x) (tal LA t(){k) = Z f(tl,‘) xtC(tOt] LA ta/-_] ’ tC{j\Cv tl)lj+] LI tOlk)'
CEQ;
The circled integral has been called Skorohod integral by P.A. Meyer [34].

W. von Waldenfels, A Measure Theoretical Approach to Quantum Stochastic Processes, 113
Lecture Notes in Physics 878, DOI 10.1007/978-3-642-45082-2_6,
© Springer-Verlag Berlin Heidelberg 2014
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Remark 6.1.1 The function

J
(wi,...,wg) € R > (y§ (f)x)(tal,...,tak)e%
is symmetric in each of the variables 7,, and locally integrable.
Proof The symmetry is trivial; for local integrability it is sufficient that all func-
tions have values > 0. Let g(f,, ..., Iy ) be a continuous function with g > 0 and

compact support, symmetric in any of the 7, , then by the sum-integral lemma, The-
orem 2.2.1,

/---/(%j(f))c)(tal,...,tak)g(tal,...,tak)dta] e dtg, Aay - - - Ao
://.../f(tC)xt(;(IQIV"'Vtak)
R

X glays-vvsveslajtes ool )dlcdly, -+ - dig, Aaty - - - Aatg < 00. Il

6.2 A Circled Integral Equation

Definition 6.2.1 Consider the subset
{(ays .o tey) € RE: ally; fori €ay + -+ + oy are different};

this differs from the set ¥ by a null set. We define on this set a mapping & onto
SR x {1, ...,k}), where G denotes the set of finite subsets, by mapping

(tOtla "'5t05k) = g = {(S],i]), s (snyin)}
where

toy + o+ lg =151, ..., 80},

i1=j<:>Sl€taj.

That is we list all the variables occurring in the #, jassy ’s and add a second index,
showing in which block j a variable occurs, to make an entry (s, j).

Definition 6.2.2 We are given the Banach algebra B; assume Ay, ..., Ay, B € ‘B
and that all points in the following subset of R

(s,0}U{t;ciear+--+ox)
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are different, which holds a.e., and define

u(Al,...,Ak,B):{s,teRz,s<t} x Rk
+—>ui,(Al,...,Ak,B)(tal,...,tak)e%

by
Ul (Ay, ooy Ak, B)(ays - Tey)
=l{s<si<---<s < t}exp((t — s,,)B)A,-n exp((s,, — s,,,l)B)A,-rh1
X+ x A, exp((s2 — s1)B) A;, exp((s1 — 5)B)
where the renumbering of variables defined above is
Bty ty) = {(sl, i1),.-., (sn, i,,)}
with
§]<:-r < Sp.
Define the unit function
e: R - B,

1 ifty, ==ty =0,
0 otherwise.

e(tal,...,tak):{

Write, for short,

J J
55 _ f (Lys.a0)-
s,t

Theorem 6.2.1 Assume A1, ..., Ax, B €8 and that
Xt tays s tey) ER X RE 15 X, () .., 10) €B

is a symmetric function in each of the variables ty; and locally integrable. Consider
fort > s the equation

k .
j t
x,:e—l—ZAj% x—l—/ Bx, du.
j=1 s,t s

Then
Xt Zuty(Al’ "-7Ak5B)

is the unique solution of that equation.
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Proof The proof is very similar to that of [41, Lemma 6.1]. We include it for com-
pleteness. Using the renumbering = we rewrite the equation in terms of

52{(S15i1)7"'7(sn5in)}7 S <0 <Sn,

and to spare ourselves further heavy notation we view a pair (s, ;) as also denoting
the variable in the #,, to which it corresponds, namely E-1( (sj,i;)}); we extend
this then to all of £. With this convention we obtain a rewritten form of the equation
to be solved, with a sum running now to n over the list of all the variables in the k
different #,

n t
5() =)+ Y Ay (6 \ Grin)lis <si <01+ B [ (@)

=1

Then we can make use of the equation

!
x@) =1+ B/ x, (D)du

whose solution is

x;(9) = exp((t —5)B).

We want to prove by induction that x;(§) =0 if {s1,...,s,} Z Is, ¢[.

Assume n =1 and s1 ¢ ]s,¢[; then, looking at the equation above for & =
x:({(s1,71)}) we see the e(£) term vanishes since & # @, the second term vanishes
because the set in {s < s; < t} is empty, and we are left with

s(fesn i) =8 [ xu(fon i

which has only the solution, namely x;({(s1,71)}) =0.
Withn > 1,if {s1,...,s,} € Is, t[, since the s; were chosen ordered, then at least
one of the s;, either s or s, is not in ]s, z[. Assume s1 ¢ ]s, f[, then

n t
5(E) = D" Agls <51 < by 6\ i) + B [ @)

1=2 N

The first sum vanishes, since, for each contribution, s; < s is still contained in the
shorter set of indices & \ (s7, i;) so the induction hypothesis applies; the integral
contribution vanishes as argued above; therefore x;(£) = 0.

Now if {s1,...,s,} Cls,t[, then x5, (§ \ (s;,7;)) =0 for [ < n, since

{Sl,...,sn}\S[ ¢]S,S1[;

similarly x,(§) = 0 for u < s,. So we are left with the final contribution

t
218 = Agxe, ({1,101 - Gt ineD)}) + Bf 2 ()du.
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But it is known how to solve this integral equation, and we get
B(t—sy, . .
x (&) =BT A x5, ((s1,01), o Sty in—1))-

Repeating this procedure to pull out all the exponential terms we finally obtain, as
asserted,

xE)=l{s<s1<---<s; < t}exp((t — sn)B)A,-n exp((s,, — sn,l)B)Al-,F1
X - X A, exp((s2 — s1) B) A;, exp((s1 — 5)B)
Zui‘(Al’"'aAkaB)(t(Xla-"atak)' D

In a similar way one proves, for the lower variable s of the evolution,
Proposition 6.2.1 For s < t, the function
Sy =u§(A1,...,Ak,B)

is the unique solution of the equation

k .
j t
yS=e+Z<f y)A,'j —/ yudu B.
j=1 s,t N

Proof Similar to the previous theorem’s proof. O

Remark 6.2.1 Again use the representation =, and write
U (AL, .oy Ak B)(tay s - L) = UL (E)
with
&= {(s1,i1),...,(sn,in)} and s1<---<$y,
and assuming s <r <t ands;_; <r <s;; then
ug (&) = up (2)ug (51)

with

g ={G1. 01, (sjo1.ij-D}

S =1{(sj.1)), o, (nsin)}-

6.3 Functions of Class ¢!

It will be important for later calculations that we are working with what are called
%! -functions.
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Definition 6.3.1 Assume a function
Xt tays s tey) ERXRE 15 X, (g, .., 10y) €B

is symmetric in each of f,, ..., fy, . Then x is called of class &Y if the function is
locally integrable and continuous in the subspace where all points ¢,#;, i € o +
.- ay, are different. We call x of class € if it is of class €0 and if, on the same
subspace, the functions

c _d
(0%), (tay s - -+ tg) = — Xt (s - - ).

dr
J —
(R:I:-x)t(tol] LERILL ) tolk) - xt:I:O(tm LI tocj_l ’ tolj + {t}v tolj+1 LU ] tak)
exist for j =1,...,k, and are of class €. Here d/dt = 0° is the usual derivative

at the points of ordinary differentiability, and R’ denote respectively the limits at ¢
from above and below, which are assumed to exist where the function is not contin-
uous. Put

Dix = Rix — Rix.
Proposition 6.3.1 If x; is of class €', then on the subspace

SCERkZ {(ta]7~~~»totk)}»

where all points t;,i € ay, ..., o are different, the function x;(ty,, ..., t) has left
and right limits at every point t, 50 X;+0(ty,, .. ., to, ) are well defined and we have
fors <t

t k j
xt—0=xs+o+/ dr’acxr/+27§ Dx.

N . s,1

j=1"

Conversely, if k + 1 functions fy, ..., fc of type €° are given, and g is locally
integrable and continuous on S, then

! ko nj
xt=g+/ dt/fo(t’)—kzyg i
Ky 121 s,

is of type €', and
(9%), oy s -+ tag) = follays -+ )
(D7x), (tays - tag) = [y L)
Hence
(RLX) (tays - to) = X ()l - )

(RYx) (tays - s ta) =X (O (tay - tg) + (DVX), (g Ty
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Proof We have that, on S, the function x; is continuous if ¢ is not one of the variables
In o, 4.4 If 7 is a variable in 7o, 4. 4oy, €.8., 1 is @ variable in 7o, we obtain

xtiO(tal 3o tak) = (R;th)t(tal PR ta_,-_| 5 tozj \ {t}7 tozj_H P tak)§
but the right-hand side is well defined, because ¢ is not amongst the variables of
lay4otaj+aj+aj o ++ap \ {7} SO Xp10 is well defined on S.
To finish the proof we discuss only the case k = 1, since for general k we can use
analogous reasoning using the representation &. Assume then we have o = a1, so

to N1s, t[={s1 <+ < 8,}

and put s = s, $,41 =1; then

n Sit1 n
Xr—0(ta) — Xs+0(fa) = Z[ : dt/acx(t/)(ta) + Z(xsi-‘rO(tot) - xsi—O(toc))
i=0"% i=1

t n
- f A9 x (1) (1) + 3 (D), (1 \ 50)

i=l1
t
=/ dt/acx(t’)(ta)Jrjlg (Dx)(to)
s s,t

since we naturally write D! = D and § = $. O

Proposition 6.3.2 For fixed s, the function u : t — u'(A;, B), and for fixed t, the
Sfunctions u' : s — u§ (A;, B), are each of class &', and one has

c t _ pt
d;ug = Bu,

(R-]‘ruv)t = Ajug’

(R£“§), =0,
oSul = —u’ B,
(Riuf)s =0,

(Riuf)s =ulA;
forj=1,.. k.
Proof By straight-forward calculation. 0

We recall the definition of the Schwartz test functions on the real line. They make
up the space C°(R) of infinitely differentiable functions of compact support.
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Definition 6.3.2 For f locally integrable on R, the Schwartz derivative is the func-
tional given by

@) = [ s wa
for Schwartz test functions . If the functional is given by
0f) () = / gD (t)dt,
where g is locally integrable, we write
g=20f.

If f is continuously differentiable except at a finite set of points {t1, ..., #,}, then
its Schwartz differential is the measure

of =0°f + Y _(f(ti +0) = f(t — 0))e, (dn),

i=1

where 9° f is the usual derivative outside the jump points, and &, is the point measure
in the point 7.

We extend the notion of the circled integral to the vaguely continuous measure-
valued function ¢ : x > &, by defining

j
(% s(dt)x) oy tg) = Y E,(A0) Xy, (gt fa\es Ty o)

CEX;

This expression is scalarly defined, i.e., for any function f with compact support in

R we have
/(fjsmr)x)f(z) =7§j<f>x.

Proposition 6.3.3 If x is of class €', then its Schwartz derivative is
k j .
0@ = (0%2),dr + 3 b etan (D).
j=l1

Proof We calculate

—/--~/Acx1~--Aakdtal --~dtakg(tal,...,tak)/dt(p/(t)x,(tal,...,tak)

where g is a continuous function of compact support. It is sufficient to calculate
the integral outside the null set where all the #;, for i € @1 + - - - + o, are different.
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Using the representation (Definition 6.2.1)

E(t()ll’ ""tolk) Zé = {(Sl’il)v'”v(sn’in)}

with s; < --- < s,, we may write

- f dr @/ (% (tay -+ log) = — f dr ¢/ (0)x(€)
= f dr (0 x,() + D 9(1) (x5, 406) — x5,-0(8)).
j=1

The second term equals

k
Z Z (p(tc)(xthrO(toq s e totk) - xtcfo(totl yeees totk))
j:] CEQ;
k .
= Z Z Q) (DIx), (tays - tapies - o)
j=lcea;

k /i :
:Z(yﬁ ((p)D]x)(ta,,...,tak).
j=1

From there one obtains the proposition immediately. 0



Chapter 7
White Noise Integration

Abstract We define integrals of normal ordered monomials. These integrals are
scalarly defined as sesquilinear forms over 7 (X, £), the space of all symmetric,
continuous functions of compact support with values in a Hilbert space £. We can de-
fine products of those objects as scalarly defined integrals. We define € !-processes
and calculate their Schwartz derivatives. We prove Ito’s theorem for € ! -processes.

7.1 Integration of Normal Ordered Monomials

In the following we shall, if not otherwise stated, skip A« etc. in the integrals. So
we write, e.g.,

//L(da) for /,u(da)A(x.

Recall that this expression stands for

1
fu(da)=u(@)+§ :;/--fu(dxl,...,dxn).
n=1

With this simplified notation the sum-integral lemma, Theorem 2.2.1, reads
[ [ prtny = [P i)
o] [e73 Y o4, =a
or, by neglecting the dx,
/ f u(al,...,ak)=/ > ).
aj ag ¥ @) +-top=a

Recall an admissible monomial is of the form (Definition 5.3.2)

O ¥
M=a.---a..
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Let S+ be the set of all i, such that ¢#; = +1, and S_ the set of all i, such that
¥; = —1. If A is the base measure, we will use the fact, that

(M)As_\s,

is a positive measure in the usual sense on an appropriate space. We shall denote by
(@| the measure, concentrated on ¢, which we denoted by ¥ in Sect. 2.1 So

(@1f)=rf®).

A monomial

is called normal ordered if all the creators a; are to the left of the annihilators a.,
ie.,

Vi=+1,0=-1=i>j.

Using the commutation relations it is clear that any normal ordered monomial
can be brought into the form

a+(dxsl) . ~a+(dxsl)a+(dx,1) . ~a+(dx,m)
a(xy)---a(xg,)alx,,) -alx,,) = a;_Ha,JrU,
with
o=1{s1,...,8}, t={t1,....tm}, v={uy,...,un}.

Assume five finite, pairwise disjoint, index sets , o, T, v, p and consider the
admissible monomial a,a. +rar+va, . The indices of creators make up the set
S+ = o0+ 1+ p, and the indices of annihilators S_ =7 +7+v.So S_\ St =7 +v.
Following Sect. 5.6, (anajﬂa,wa;))\nﬂ is for fixed #m, #0, #1, #v, #0, a mea-

sure on X#(THo+T+v+0) 1 etting the numbers #7, #0, #7, #v, #p run from 0 to oo
we arrive at a measure m on X°

m=m(r,0, 7,0, p) = (ara)} ar 100} r 0.

Using Theorem 5.5.1 and Theorem 5.6.1, we obtain (forgetting about the Aw),
m= /L;<awaa+ra;)(awar+va;>)‘w+0+r+u
= / co+t+ow,m)E(T+v+ow, PArototr+u-
o
If ¢ € #(X3) then

/m(mo,r,u, Pe(r, o, 1,0, p)=/¢(o+f+w,a, T, U, T+ U+ 0)Aototr4us

(forgetting about the Ao, Az, ...).



7.1 Integration of Normal Ordered Monomials 125

Assume we have a Hilbert space £ with a countable basis. We often write the
scalar product x, y — {(x, y) in the form x Ty by introducing the dual vector x . We
denote by B(¥) the space of bounded linear operators on £. We provide B(¥) with
the operator norm topology. If A € B(), then A" denotes the adjoint operator.

Assume the function F : X3 — B(t) is locally A-integrable, i.e., locally inte-
grable with respect to e(A)®3, and f, g € #(X, ¥) (continuous in the norm topology
of £). The integral

/ m(r, 0,7, v, p) f T (1) F (0, 7, 1)g(0)

= / fHo+ 1+ 0)F(o,7,0)8(T + U+ 0)hptotrrtv = (fIB(F)|g)

exists and defines a sesquilinear form on %5 (X, ¥). We may say that

B(F) = / F(o, 7, v)a}, ;arsvhy

is scalarly defined as a sesquilinear form in f, g by using

<f|=/f+(ﬂ)<¢|an)»n, Ig)=/g(p)a;|¢’>;

note that a;r is a measure but a, has to be multiplied with the base measure A, . We
shall use the following formulas, which can be established easily.

Lemma 7.1.1

aaf|®) =) s(@,a)al,|1P),

aCw

aja,ay|®) =Y e(w a)af|®),

aCw

(Plaga) =Y e(at, o) (Plana.

aCmw

(Plagafar = el 1) (@ |au\a-

aCm

Proposition 7.1.1 The sesquilinear form {f|%(F)|g) induces a mapping O(F)
from s (X) into the locally A-integrable functions on X, and we have

(fIB(F)|g) = / [T @)(0(F)g)(@heo =(fIOF)g),.,

(0F)g)@=>" > | MF(a B v)g\a+v).

aCo Bcw\a*
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If we define
Ft(o,t,v)=F(v,0,7)",
we obtain
(fl0(Fg), =(0(F7)flg),.-
Proof We have
m = (azal, ar1va) g po = (Plazal, ar 100} |D)hgpo.
Now

(@lagaf =) e(a,0)(Plana

aCrmr

and

(@lagaar =Y (B T)(®lan\p-
BCw

From there one obtains the first formula. Using the results of Sect. 5.6, we have
m(r, o, 7,v, p) =m(p, Vv, T,0,7)

and obtain
(F10(F)g), ={g10(F) f), = (0 (F*) f1g) -
Consider a new longer similar expression, a measure on x8,
m(r, 01, T1, V1, 02, T2, V2, p) = (aza, +r.ar1+u1a£+zzatz+wa;r)?»n+u1+uz.
Assume F, G : X3 — B(£) to be A-measurable and define
(fIB(F,G)lg)
= /m(ﬂ, 01,71, V1,02, T2, 02, ) f T (W) F (01, 11, v1) G (02, T2, 12)8 ()
provided the integral exists in norm. So the bilinear form #(F, G) in F and G,

whose values are sesquilinear forms in f and g, can be written as the scalarly de-
fined integral

+ +
B(F,G) = / F(o1, 11, v1)G (02, T2, U2)dg 41 Aty 40, Agy 41y ATy 0o huy 03 -
One obtains

Proposition 7.1.2

(fIB(F,G)lg) =(0(FF) f10(G)g),.
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Proof Use the representation of unity from Sect. 5.6, and obtain
_ + + + +
m= /(aﬂa01+rl Ar4u 4y ><awaaz+rzalz+vzap >)‘7T+U1+U2
w

_ + + + +
- /(awarl+ul Ari+014y )<awaaz+r2az+vzap )kw+01+vgo
w
From there one obtains the result. O

Therefore a sufficient condition for the existence of (f|ZA(F,G)|g) is that
O(FT) and O(G) are bounded operators from .#(X,%), provided with the
L2(.’{, £, A)-norm, into Lz(%, g 0.

7.2 Meyer’s Formula

As might be guessed from Wick’s theorem, there exists an H such that Z(F, G) =
A(H). In fact we have the following theorem, basically due to P.A. Meyer [34].

Theorem 7.2.1 (Meyer’s formula) If F, G are locally h-integrable on X3, symmet-
ric in each variable, such that

+ +
B(F,G)= / F(02, T2, 12)G(071, T1, U1)dg, 4 1, Gty 1, Gy 47, Oy vy Aoy +0s

exists, then there exists a locally \-integrable function H on X3, symmetric in each
variable, such that

B(F,G)=AB(H)
and H is given by the formula

H(U,T,U)=Z/MF(061,062+/31+ﬂ2,V1+V2+K)
K
x Gk +oax+oaz, B+ B3+ 12, v3)

where the sum runs through all indices ay, ..., y3 with

a] +or) +o3 =0,
Bi+pr+pB3=r1,
Vi+y2+tys=v.
That is essentially Meyer’s formula [34, p. 92]. The difference is mainly, that his

formula is formulated for sets of coordinates, whereas our formula deals with sets
of indices of coordinates; in addition, our formula holds for any locally compact
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set and for any base measure X; Meyer considers only X = R and the Lebesgue
measure. This formula was proven in [43] for C.-functions. In order to generalize
it to more complicated functions one must use the extension theorems of measure
theory.

Proof We prove the theorem only for positive Cc-functions and leave the general-
ization to the reader. Recall from Sect. 5.3 that

s, p)=law,af)= Y []elc.0) ()

@eB(a,p) cex

where B(w, B) is the set of all bijections ¢ : « — . If #a # #0, then B(a, B) =0
and e(a, B) =0
One shows easily that

elar+a, B)= Y elar, f)e(@, B),
Bi+B2=p

e, pr+p)= Y. elar,pe(e, po).

aj+ar=a
From there one concludes that
() elar+az, B+ B =Y elan, fr)e(ai, fa)e(@ar, Bra)e(@a, Br)

where the sum runs through all indices 11, ..., B2 with

ap +op =o, az] + o = a2,

B+ B2 = Bu, B21 + B2 = Bo.
We have

B(F,G) = / Av+u, F (02, 12, T1)G (01, T1, Ul)a<_;!—2+12afz+v2a;_l+rla‘L'1+U1»
where the integral runs over all (mutually disjoint) index sets o1, ..., vy. Calculate
a(j2+fza,2+vza;rl +1114v;
=D a3, eyt o oarton o by € (122 + V22, 012 + T12)

where the indices obey the conditions

1 + 722 = 12, v21 + U2 = 2,
o011 + o2 =01, 11+ T12 =11

Following ()

e(ty + v, 012+ T12) = Y £(Taa1, 0121)e (1222, T121)e (U221, 0122)8 (U222, T122)
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with

7221 + 7222 = 122, U1 + U222 = U2,

o121 + 0122 =012, T121 + T122 = T12.

Using the sum-integral lemma

B(F,G) = /luz1+uz21+uz22+u1F(02, 721 + 221 + 222, V21 + U221 + U222)
x G(o11 + o121 + 0122, T11 + T121 + T122, V1) (1221, 0121)€(T222, T121)
+
X (U221, 0122)€(V222, T122) A5, 41, 41301 +1m-+011 +711
X Qry +vy+111+T121 HT122 V)

where the integral runs over all indices. Put

oy =0y, o121 = T221 =02, o11 = a3,
1 = B1, 0 = T121 = B2, 711 = B3,
v = Y1, V22 = T2 = V2, vl =3,

0122 = VU221 =K,
where the equalities in the second column hold after integration. Define
o) +oy +a3=o,

Bi+ B+ pB3=r1,
Vi+yv2+yi=v,

and obtain the theorem using the sum-integral lemma again. U

7.3 Quantum Stochastic Processes of Class ©': Definition
and Fundamental Properties

Recall the definition of functions of class %’! from Definition 6.3.1, and use, instead
of the index sets «y, ..., ai, the index sets o, T, v; set B = B(£), where ¢ is a Hilbert
space. Assume x; (o, T, v) of class ¢!, and use the notation

(Rlix)t(t(fa fr,ty) = xtiO(ta + {1} tr, tv),
(RYx),(t tr, ty) = Xyz0(to e + {th 1),
(R:Elx)[(tﬂﬂ fr,ty) = xtiO(tm Ir,ly + {t}),

(Dix)t = (Rf‘_x)t — (Ri_x)t.
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Note we are using 1,0, —1 as indices where a while before we used 1, 2, 3 analo-
gously. Recall, from Sect. 7.1, the definition of the measure

m(m,o,1,V,p)= (aﬂa;‘+ra,+ua;>kﬂ+v

and the sesquilinear form
(fIB(F)lg) =/m(7r,6, T, v, ) f (@) F (o, 7, v)g(p).

Definition 7.3.1 If x; is of class €', we call %(x;) a quantum stochastic process
of class €.

Theorem 7.3.1 If x; is of class €, then the Schwartz derivative of (f|B(x:)|g)
for f, g € (R, ©) is a locally integrable function

A f1B(x)Ig) = (f1B(8°x:)|g)
+at) f|2(D'x)Ig) +(a(t) f|Z(D°x:)|a(t)g)
+(f12(D ' x/)|a(t)g)

and we have, for s < t,

t
(f1B(x)1g) — (f1B(x5)18) =/ dr'd(f1%(xv)lg)-

N

Using the notation of Sect. 2.4, we may write
3B(x) = B(8°%) +a’" () B(D'x;) + a’ () B(D x)a(t) + (D' x;)a(t).
Proof From Proposition 6.3.1 we have, with ¢ = 1}, [,

(f1Bx)1g) — (1B (x5)]g)
= (1B xi-0)18) — (f1B(xs1+0)18)

= / mfT(m)dfx, (0, T, v)g(p)p(t)ds

+/mf+(JT)Z(DOx)szC(G \ ¢, 7, 0)g(P)g(tc)

ceo

+fm.f+(n)Z(D1x)cxtc(o, T\ c,v)g(P)p(te)

CET

+ / mft ) Y (D7) . (0.7 v\ g () re).

cev
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By using the sum-integral lemma, we obtain for the last three terms
/ laxatsepetiesoat Por o £ (D1X) 2 (P)0(C)
+ /(ana:+f+car+c+va;>)\n+u f+ () (Dox)cg(,o)(p(c)

+/(ana;r+c+far+v+ca;>)\n+u+cf+(77)(D_lx)cg(p)¢(c)

where the integration is over all indices =, o, 7, v, p, c. From there we deduce the
result. O

7.4 Ito’s Theorem

Recall Sect. 7.1, and consider the measure
m(z, 01, 71, V1, 02, 12, V2, ) = <ana;—1 +r %01+ ar;+rzalz+U2a;>)‘n+ul+v2~
Assume F, G :R° — B(£) to be A-measurable, and define
(fIA(F,G)lg)
= /m(m 01,71, V1,02, 72,02, ) f T () F (01, 71, v1) G (02, T2, v3)g ()
provided the integral exists in norm.

Theorem 7.4.1 Assume x;, y; to be of class €', and that for f, g € H#;(R, ) the
sesquilinear forms ( f|B(F;, G;)|g) exist in norm, and t € R+ (f|B(F;, G,)|g)
is locally integrable, where F; can be any function in {x;, 0°x;, Rix,, Rix,, Ry x;}
and G, can be any function in {y;, 9°y;, Rl_Ly,, Riy,, R;ly,}.

Then ( f|%B(x:, y1)|g) is a continuous function, its Schwartz derivative is a locally
integrable function, and a formula for it is

I f1B e, y)lg) = (FIB(3xe, yi) + B(f, 9yi) + I-1,4+1.418)
+{a@ f|B(D %, yi) + B(f. D' yi) + To.+1.418)
+(a@) f|B(D°:, yi) + B(f, D) + o0, |a(t)g)
+ (fIZ(D " %0, y) + B(f. D™ yi) + 11,04 ]a(t)g)
with

Ii jo = B(Rixi, RLy) — B(R.x;, R y;).
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So, for s < t,

1
(f1B(xi, y)lg) — (f1B(xs, ys)18) =/ ds'd(f1% (xy, y5)1g)-

N

Again using the notation a’, we may write
B (x, y1) = (B(3xe, yi) + B(f. ) + I-1,41.1)
+a"()(B(D'x1, y1) + B(f. D'yi) + Io,+1.1)
+a'(t)(B(Dx, yi) + B(f, DOv) + Io,0.4)a(t)
+(B(D "%, ye) + B(f, D y) + 1-10,)a(0).
We start with a lemma.

Lemma 7.4.1 Assume x; be of class €, and define the function N on X3 by

1 if{ts+r+0v}® has a repeated point,
N(o,t,v) = .
0 otherwise.
Then the functions
x+0(0, 7,0)(1 = N(0, 7, 0))

are everywhere defined Borel functions, and we consider

f laxaeal s rarvoat) [+, 1000, 7. v)(1 = N(o, 7, 1))g ().

Understand this expression as a scalarly defined integral and obtain
+
/azeaﬁrawukuxwo(o, 7,v)(1 = N(o,7,0))

= ﬁ(xtc)ac + ﬁ((R—]I—x)t ) + ﬁ((RE)I—)zC)aC'

c

Proof The function

x10(0, 7, v)(1 = N(o, 7,v))
xi(o, T, V) if ¢ ¢ lott4vs
(RLx) (0 \b,T,v) ift=t,beo,

(ROx);(0, T\ b,v) ift=tpberT,
(R'x)i(0, T, u\b) ift=tp,bev

= (1 — N(o, 1, U))

is defined everywhere. We calculate

/atga:+rar+u)¥uxtg+0(0" T, U)(l —N(o, T, U))
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= /\xlp+0(oa T, U)a:+IaT+U+CA'U(1 - N(Gﬂ T, U))

+ /ch+0(0, T, v)[a,c, a;r+ra,+v]kv(1 — N(o, T, v)).

Because, in the first term on the right-hand side upon insertion of f, g, & all mea-
sures are A-based, we may neglect N and replace #. + O by 7.. The second term
equals, with the help of the sum-integral lemma and integrating over #;,

f (Zs(c, b)af vty + Y elc, b)agﬂ\barﬂm)xtﬁo(o, 7, V)

beo beo
X (1 — N(o, 1, v))
:/a:+rar+u)\v

X (1 —N(o +c, 1, U))(x,(,_:,_()(d +c,T,V)
+ (1 —N(o,t+c, U))x,r_,_o(o, T+c, U)ac).
If we insert the functions f, g, h into the expressions, we see that we have to deal

with integrals over A-based measures; we may neglect N. We use the expressions
R i, Rg introduced in Sect. 7.3, and arrive at

/atca;+ra,+vkvxtc+o(o, T, u)(l — N(o, 1, v))

= /a;“+rar+u)»v(acxtc (0,7,V) + (Rl_x)tc (0,7,V) +aC(R3_)[C (0,7,v))
= 0(xy)ac + ﬁ((RJlrx)tc) + ﬁ((Rg)ty)aC. O

Proof of Ito’s Theorem By the formulae in Sect. 7.1, the sesquilinear form A(F, G)
vanishes if one of the functions F or G is a Lebesgue null function. So for fixed ¢

B(xt, y1) = B (X105 Yi£0)-

Define

1 if {t;4740]}® has a repeated point,
0 otherwise.

N(o,t,v) = {
As N is a Lebesgue null function, we have, for 1y < 11,
(1B (xeys ye)g) — (fI1 B (x1ys yip)18)

=/m(ﬂ701,fl,U1,02,T2,U2,7T)f+(ﬂ)(1 — N(o1. 11, v1))
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x (x—0(01, T1, V)Y —0(02, T2, V2) — X1940(01, T1, V1) Yip40(02, T2, V2))
x (1= N(02, 72, v2))g(p).
We consider the set
(toy 4r14v; Uloytrytoy) N0, nl = {t' < <"1},
and put rg = * and 1, = 1" to obtain

(xt,—0(0o1, T1, V1) Y1 —0(02, T2, 12) — X1940(01, T1, V1) Yiy+0(02, T2, 12))

X (1 — N(oy, 11, vl))(l — N(o, 12, vz))

n li
= Z /_71 dr(3x; (o1, T1, V1) Yi (02, 12, V2) + X4 (01, T1, V) Vi (02, 12, L2))

i=1"!

X (l — N(oq, 11, vl))(l — N(o2, 12, Uz))

n—1

+ Z(x,i+o(01, 71, V1) Y,i 10(02, T2, V2) — X,i _o(01, T1, V1) Y,i (02, T2, Uz))
i=1

X (1 — N(o1, 11, v1))(1 — N(o2, 12, vz)).

The first sum equals
n
/ dt(0°x (o1, T1, V) Y1 (02, 12, V2) + X, (01, T1, V1) Y1 (02, 12, L2)).
fo
Remark that the points of each of 75, 11,4+, and t5, 4, +v, are all different, but there

may be points common to both. The second sum equals

> (*1+0(01, T1, V1) = X1, —0(01, T1, V1)) Vi —0(02, T2, U2)
ceol+11+vy, teE€lfy, 1|

X (1 — N(o1, 11, vl))(l — N(o2, 12, vz))

+ > (xr—0(01, 1, V1) (¥r4+0(02, T2, V1) = Y1 .—0(02, T2, V2))
ceor+T1a+v2, teE€lty, [

x (1= N(o1,71,v1))(1 = N(02, 72, 12))
as, for example,
Xi.40(01, T1, V1) — Xe—0(01, T1, 1) =0
for tc ¢ to,+1,4+v,- We discuss the integrals of the terms of the form

Z x+0(01, 71, v1) (1 = N(o1, 71, V1))

ceoi+T1i+v;, te€lto, 1
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X Yi.£0(02, 72, 12) (1 — N (02, 12, 12))
and assume at first, that f, g, x;, y; are > 0, then define

o) =1{r € o, 11[}
and consider
/f(ﬂ) Z xie40(01, 11, v) (1 = N(o1, 71, V1))
CcEo+T1+V]

X Yi,+0(02, T2, 12) (1 — N (02, 72, 12)) g (D)@ (1)
x m(x, o1, T1, V1, 02, T2, U2, )

=I1+1+1l.
We split up the sum into three parts
PIEDIEDIED I
ceo+T11+V) CEO|l CET] CEV]
We have, using the sum-integral lemma,

I= / f @) Z(Rjrx)tc(ol \ ¢, 1, u1)(1 = N(o1, 1, v1))

ceo]
X Yi,40(02, T2, 12) (1 = N(02, 72, 12)) g (P9 (1)
x m(w, o1, 71, V1, 02, T2, U2, P)
= / f(ﬁ)(Rix),c(Ul, 1, v1)(1 = N(o1 +¢, 11, V1))
X Yi4+0(02, 72, 12) (1 = N(02, 72, 12)) g (P9 (1)

+ + +
X (aﬂam—i-c-i—r. At v Aoy 41, A +02 4 ))‘N+U1+Uz

= /dt(p(t)(a(t)f|@(R_l|_xt, }’t)|g>

n
=/ de{a(t) | B(RLx:, v1)g).
I

0

The integral over N (o1 + ¢, 71, v1) and N (o2, T2, v2) vanishes, and y; 1o = y; a.e.
with respect to the integrating measure.
In the same way

II=/f(n)(R2x)tc(al,r1, v (1= N(o1, 71 + ¢, 1))

X Yi.40(02, 72, 12) (1 = N (02, 2, v2)) g ()P (1)
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+ + +
x <an%1+n+car1+c+v1 Aoy 41,3 +124) >)\71+U1+v2-

Using the representation of unity from Sect. 5.5, we obtain
1= / FE)(RYx), (o1, 71, v)(1 = N(or, 71 + ¢, v1))
X Y1 40(02, 72, v2) (1 — N (02, 72, 12)) g (P) @ (1)
X A(aﬂa$+rl+cafl+ul a;t)(awaca:z+rza,2+v2a;))»n_ﬂ,]+U2.
Now, by the proof of Theorem 7.3.1,
/ FE(RYD), (01,1, 00 (1 = N0t 71+ 6 0)) @4y ey o0

= (0((R%x),) @ f) " @ho,

and by the last lemma

/yt(,+o(02, 7, v)(1 = N(o2, 2, UZ))g(p)(awaca<—7i_2+r2afz+vza;>)‘vz

= (awacll;_z+.[zllrz+1;2a;—))\n+v|+U2g(w)
= ((0Owac+ O((R1y),) + O((RYy), ac))g) @),

where N (o1, 71 + ¢, v1) and N (02, 72, v2) can be safely neglected. So finally
11 = [ ag@l(O((Rx),) a0 ac + 0((RL), ) + (RS, @),

= / dto(t) ((a: f1B(RYx),. yi)|a()g) + (a: f1B(Rxi. RL yi)g)

+ (a; f1B(RYx,, R yilarg)).

We calculate
111=/f(7f)(R;1x),C(01,71, v)(1 = N(o1, 71, v1 +0))

X Y1 40(02, 72, v2) (1 = N(02, 72, 12)) g (P) @ (1)

x <ana;’1 4113t 4u1 +Ca<_r|—2+r2afz+vza:>r>)‘ﬂ+vl+C+v2
—1
=/f(7f)(R+ x), (o1, 1, v)(1 = N(o1, 71, v1 +0))
X Y1 40(02, 72, v2) (1 = N(02, 72, 12)) g (P) @ (1)

+ + + +
X / <“rr Aoy 41414014 ><awa€aaz+rzafz+v2 a, ))w+v| +ctuy -
w
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By calculations similar to those for II one obtains

1 = / de)((f1B(RT x4, yi)|a®)g) + (F1B(RT xi, R i) lg)

+(FIB(RT . R ) a(0)g)).

The assumptions of our theorem guarantee that all the expressions exist and we
may extend the formulas to vector- and operator-valued functions. By analogous
calculations,

/‘f(ﬂ)Jr x.x0(01, 71, v) (1 — N(o1, 71, V1))
ceo+T11+V]
X ¥140(02, T2, 12) (1 = N (02, 12, v2)) g (D)@ (1)

x m(m, o1, T1, V1, 02, T2, V2, P)

41
- f Ak s (1)
fo
and
/f(ﬂ)Jr x—0(o1, 1, vD) (1 = N(o1, 71, 01))
ceo+12+v2
X yi,+£0(02, T2, 12) (1 = N (02, 72, V2) g (P9 (1))
x m(m, o1, T1, V1, 02, T2, U2, )
=/df(0(l)K—,i(f)
14|
=/ dtK_ +(1).
fo
We have
1 2
Kiv=K" +Kk2,,
K—,:l: == K(,l’)i + Kg%)i
with

KD, =(a@) f|B(RLxe, y)1g) +(a @) f|B(Rx:, yi)|a(r)g)
+ (fIB(RE x1, y1)|a(t)g)
<
)

’

KU =(a0) f|B(x, RLy:)1g) +{a(t) £|B(xi. ROy1)|a(t)g)

f|@(xt, i y,)|a(t)g
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and
K@, = (a0 £|2(Rxi. RLyr)lg) +(a() £|B(Rx:. RLy:)|a(t)g)
+ (f1B(RL x0, ROy:)[ag) + (f1B(RE %1, RLyi)Ig).

From there one achieves the final result without great difficulty. U



Chapter 8
The Hudson-Parthasarathy Differential
Equation

Abstract The Hudson-Parthasarathy quantum stochastic differential equation can
be solved by a classical integral in a high-dimensional space. With the help of an
a priori estimate it is possible to show that the solution is unitary, under the usual
assumptions. The unitarity allows stronger estimates: the I';-norm is of polynomial
growth. This provides the resolvent of the associated one-parameter group with the
properties needed for the discussion of the Hamiltonian. An explicit form of the
Hamiltonian can be established.

8.1 Formulation of the Equation

We shall investigate the quantum stochastic differential equation that reads in the
Hudson-Parthasarathy calculus [34, 36]

d,U! = A\dB}U! + AgdAU! + A_dB,U! + BU!dt, with U* =1,

where A1, Ag, A_1, B are operators in B (). In his white noise calculus Accardi [3]
formulates it as a normal ordered equation

daut!
dt

= A1a Ul + Aoa; Ula, + A_ Ula, + BU..

Our formulation is very similar to Accardi’s. We interpret U! as a sesquilinear
form over J#;(R) given by the classical integrals

(f1U{1g) =/f+(ﬂ)u§(0’, 7, 0)8(|anag 1 aryva] o

where ui is locally integrable in all five variables s,, o, T, v. We formulate the
differential equation in the weak sense as

d
3 10518 = a 141U 1g) + (ar f1AoU" |asg) + (fIA_1U" |a,g) + (f1BU!|g),

U =1
W. von Waldenfels, A Measure Theoretical Approach to Quantum Stochastic Processes, 139
Lecture Notes in Physics 878, DOI 10.1007/978-3-642-45082-2_8,
© Springer-Verlag Berlin Heidelberg 2014
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or, using the operator ¢ and interpreting the bracket as a weak integral,
Ué{ T t T t A t t
5 ¢ B AUy +a'(t)AoUga(t) + A_1Uga(t) + BUy,

which is still more similar to Accardi’s formulation. We can write the differential
equation better as the integral equation

t t
(f|U§|g>=(f|g)+f dr(arfIA1Usr|g)+/ dria, flAoU! |arg)

N N

t t
+/ dr(f1A_1U arg) +f dr(f|BU!|g) )

N

for t > 5. We shall show that this equation has a unique solution, which can be given
explicitly.

8.2 Existence and Uniqueness of the Solution

Lemma 8.2.1 The equation (x) is equivalent to the circled integral equation (xx)
1 0 -1 '
u§=e+A1¢‘ u;+A0¢‘ u;+A_15£ u;‘—i-B/ dr u;, (%%)
s,t s,t s,t K

1 ifo+t+v=40,
0 otherwise.

where

e(o,T,v) = {
Proof Consider, for example, the term
t
/ dr (a, f1AoUy |arg)
N
= / l[s,t](tc)f+ (w+o+T1+0)Ag ”?. (0,7, V)8(@+ T+ U+ )rototrtute

= / D ) fH @+ 0 + 1) Aul (0.7 \ ¢, 1)@+ T+ V)hototrtv

CET

0
= / f+(a) +o0+1)Ap (f u&)(a, 7,0)8(®w+ T 4+ V)Aptotriv-

.1

Remark that the function u(o,t,v) is determined by the sesquilinear form
(f1U}|g) Lebesgue almost everywhere. O

Applying Theorem 6.2.1, we obtain immediately
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Theorem 8.2.1 Equation (x) has a unique solution, namely
Uj = B(ul(A1, Ao, A_1; B)).
We recall the definition of u?:
ul(o,7,v)
— (—i)neB(t_S”)AineB(s”_S”’l)Ain,l
A eBrTS A BETI g C st
if 15474 1s without a repeated point and

togrqu ={s <SS <$ < -+ <s§_1 <8, <t},

where the A;; are numbered accordingly.
If O, is the operator inducing the normal ordering of a and a™, one may write

vi=14 i [
n=1 S

Qa(eBC(Ar1a™ (dsy) + Aoa™ (dsn)a(sn) + A—1a(sy)ds, )eBEn =50

<S|<Sp<-<sp <t

&P (A1aT (dsy) + Aoat (dspals)) + A—ja(sy)dsy ) )eBE).

Using the notation a™(dt) = a’ (¢)dr, the last equation becomes

o
Ul=1+ (—i)"/"'f e

Q4 (P17 (Ara” (sn) + Aoa’ (sw)asn) + A-ralsy))e? =)

- PO (414" (51) + Aoa’ (s1)als1) + A_ta(sp))ePE17Y).

8.3 Examples

8.3.1 A Two-Level Atom in a Heatbath of Oscillators

We discuss the four examples introduced in Chap. 4.
We consider the equation

(d/d)U! = —iV2ra (1 E_ Ul —iV27E4_Ula(t) — wE44 U!,
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where the four £y are the 2 x 2-matrix units. Then

o0
Uj=e‘”E++(f—s>—|—Z(—‘/2ni)”/~~- dsy - - dsy,

<SS <§H < <Sp <
n=1 §<81 <852 Sp <t

0, (e—ﬂE++(f—Sn) (E__,_aT(sn) + E+_a(Sn))e—ﬂEJrJr(Su—Snfl)

.. .e—”E++(52—S1)(E_+aT(S1) + E+_a(sl))e—ﬂE++(Sl—S)).

Use the notation |+) = ((1)) and |—) = ((1)) Then we calculate

t
Ul ® 10) =e 7"V |4) @ |0) — i@/ dsi|—) ®@a’(s1)|B)e 71—
since
(E_ya" (1) + Ex—a(sn) (1) ®19)) = |-) @ a’ (s)19),
Qa(E—+a’(s2) + Eq—a(s2))(E—+a’ (s1) + Eq—a(s1))|+) ® |¥) = 0.

Also

U=y ®@a'()19) = (I-) @ a’(9)19)) — iv2r f dsie™™ V| 4) ® |9)

— 27 f/ ds1dsre 2705 (s — 51)|—) @ a' (52)|4)
s<s1<$H <t
since

(E_4a’(s1) + E4—a(sD)(1-) ®a' (9)10)) = 8(s1 — 5)(|+) ® 19)),
Qu(E—ya' (s2) + E1—a(s2))(E—ya' (s1) + E+—a(s) (I-) @ a’(5)19))
=38(s —s)|—) ®@a’ (s2)10).

The terms of third and higher orders vanish. So the subspace spanned by |+) ® |{)
and |—) ®a’(s)|0), s € R, stays invariant, and the restriction of Ué to this subspace
coincides with the matrix V (¢) in the formal time representation (see Sect. 4.2.4),

as
Voo Voi

V)=
© <V10 V11>

and

Voo(t) =e™ ™,

t
(Vor(0)I7) = —i(zn)1/2/ dte " (r — 1),
0
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t
(<1720) = i2m) 7 [ anso — v,
0

@IV (O] =81 — 1) — 21 / / dndis (ts — t)e ™S — 7).
O<ti<ty<t

8.3.2 A Two-Level Atom Interacting with Polarized Radiation

We work with the space
X =L*RxS*x {1,2,3))
provided with the measure
win = [[arodan 3 s,
i=1,2,3

where dn is the surface element on the unit sphere such that

/ dn=4n
§2

and oy is the transition frequency. Use the notation again
X={0)+X+ X2+
and consider
r=L*x0C%.
Recall the vector
v(n) = I1(n)q,
where I1(n) is the projector on the plane perpendicular to n,
I1(n);j =6;j —mn;n;

and q is a fixed vector given by physics.
One finds

) 8w
y:/w%dn|v(n)‘ =?|q|2.

We have the annihilation operators a(f,n,i) and the creation operators
a™(d(t,n, i)). Define the vectors

a(t,n) = (a(,n, i))l.:mﬁ, at(d(t,m)) = (a(d(t, m, i)))l.:mj.
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Consider the quantum stochastic differential equation
4 U! = —i«/ﬂ/sz(v(n), at(d(n,1)))Eq U’
— V21 EjoUldt /sz widn{a(z, ), v(n)) — wy E\ Uldr.
We use the notation
K(dr) = /Sz(v(n), at(dn,1))Eor + /S2 Elodtwgdn(a(t, n), v(n))

then we assume without proof, that the solution is analogous to the series of Theo-
rem 8.2.1

U;=1+Z(—i~/ﬂ)”/-../

=1 S<S| < <8y <t
@ae_ny(t_s”)K(dsn) . e—iﬂV(Sz—Sl)K(d[l)e—ﬂy(M—S)_

By a similar calculation to that in Sect. 8.3.1 we obtain that the subspace spanned

by ((1)) ® |@) and ((1)) ®a't(d(t,n,i))|0) stays invariant and that the restriction of U}
to that subspace equals V (¢) in the formal time representation in Sect. 4.2.3.

8.3.3 The Heisenberg Equation of the Amplified Oscillator

This is formally very similar to the first example in Sect. 8.3.1. We have the stochas-
tic differential equation

d .
aU; =iv2ra"(E_ U —iV2rEy _Ula(t) + mE4 UL

The subspace spanned by |+) ® |#) and by the |—) ® a™*(ds)|¥) stays invariant, and
the restriction of Ué coincides with the matrix V (¢) in Sect. 4.4.2. But the analytical
character is very different, as was pointed out there.

8.3.4 A Pure Number Process

The differential equation is of the form

d,U! = cat(dt)Ula(t).
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It can be solved by the infinite series of Theorem 4.2.1. The number operator
f at(dt)a(t) is an invariant. If we restrict to the one-particle space, we obtain

t
@la(sUla’ (sD)I0) = 8(s1 — 52) +c/ dn8(s1 — 1811 — 2)

= (14 clys,11(51))8(s1 — 52)
in agreement with the formula for V (¢) in Sect. 4.5 with

—i2m
1+in’

C =

8.4 A Priori Estimate and Continuity at the Origin

Definition 8.4.1 We define the Fock space
I'=L%R.tel)

of all symmetric square-integrable functions with respect to Lebesgue measure from
R to ¢. If f is a measurable function on R define the operator N by (Nf)(w) =
(#w) f(w), and define I'; as the space of those measurable symmetric functions
from #R to ¢ for which

/A(w)(f(w)l(N + D¥ f(w))dw < o0.
We denote by |.|| , the corresponding norm. We write for short
H = AR, b)

for the space of all symmetric continuous functions from A to £ with compact sup-
port. Call J# ™ resp. I'™ | the subspaces where f(w) = 0 for #w > n.

We extend the notions of a and a™*. We define a(pA) f =a(p) f and a™ (@) f for
¢ € L>(R) and f € I"™. We have the well known relations

a(p): '™ — =", la@) ], < vnlel 20 flir.
a@: ™ -t a@) £ <V + el f

One sees easily

Lemma 8.4.1 We have for ¢ € L*(R) the equations

/ at(@)e() (@) =exp< / aﬂdr)wm),
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/ ha(V)e(@) (V) = exp( / dra(r)w(r)),
fa+(r)a(r)e(¢)(f) =0, eXP(/ a+(dt)a(t)<p(t)>,

with
(@)1, ..., 1) = 1) - o(tn)

as usual.

Lemma 8.4.2 Assume we are given a Lebesgue measurable function f : R — €,
then

2 N
/)»le{#é:k}Hf(E—i-a))” = <f|<k>|f>'

Proof The left-hand side of the last equation equals

[raXlr@ 1w == [ )15

ECw

after a change of variable and using the sum-integral lemma, and the resulting right-
hand side is what was needed. d

f =CXP</ a*(dt)w(t))g,

N 4ol N(N)
<f|<k)|f>skZe 1" (g|2 k)8

1<k

Lemma 8.4.3 If

then

Proof We assume f >0 and g > 0. One obtains

f@)= )" e(p(on)g(02)

o1+07

and

/ e rol{#E =K} FE + o)

2
= f xs+w1{#e=k}< > e(¢)(€1+w1)g($2+w2))-
w1twry=w

§1+62=¢§
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Using Cauchy-Schwarz inequality

<ok / el =k) Y e(9?)Er + oD+ w2

w1 twr=w
§1+&=¢§
= Z /Afl+§2+w1+w21{#él =k }1{#& = ka}
ke +ky=k

2M1e(p?) (E12" e(p?) (w1)22 28 (&) + wp)?

= Y el g (g>|g>

ki <k

as
1 2
f he L{#1 = ka)2%e(0) 6) = 527 ol < 21!
and
and
#Er+wn) 2 n(N

Ayt 152 = k2}2 g2+ w)” = (gI2 Ky lg)

by the same reasoning as in the proof of the preceding lemma. g

Proposition 8.4.1 Assume
Ul =0(ul (A1, Ao, A_1; B)).
Then there exist constants C,, (t — s) such that, for f € K
U £l < Cos@ = fllr
Furthermore, fort |, s and f € X,
|usr = £l =0

Proof Define
C =max([|A;ll,i =1,0, -1, ||B);
then

||u§(o, 7,V) || < ec(tfs)C#"+#f+#“1{to+T+U C [s, t]} =eCte()(o + T+ V)

with x (r) = Cl5,11(r) and e(x) (@) =[] e, X (te)-
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We have using Proposition 7.1.1
[0(5) £ @
=3 Y [me e + o] f\o + )]
oCoTCw\o
=TI (RES{TY 1) (@).
For g € H (R R), g >0 we have

/Au(aue(x)(v)g)(w)= (T g)(w) =/Aue(x)(v)g(w+v) = (exp(a(x))g)(@).

As T!: #™ — ™ we may estimate the I;-norm by the I"-norm. We have

|Tie] <> /mynm =1 =1+ DC" — )8l r

1=0
as
Ixll;z=Cvt —s.

Furthermore we have
St o
s . b

f (aarg) (@) = (Sig) (@) =D e(N)(T)g(@) =e(l + x)(@)g(®)

<
and

ISiell - < a+0)lglr
Again

R:or™ sk

[ @e@)@ = (Rig)@ = 3 00\ o) =expla* (08) @)

oCw

Use the inequality of the last lemma and obtain the first assertion.
We investigate the second assertion. As

(@) - N@=3 3 [ruteroio+o o0 @ a+v)

oCwtCw\o



8.4 A Priori Estimate and Continuity at the Origin 149

we may estimate the norm by

Z Z /Auexp(C(t—s))e(x)(a—i—t—}—v)”f(w\a+U)||1{c7—|—r+v7éVJ}

oCwtCw\o
—exp(Ct — ) ((RISIT! = V) £1) ().

‘We have

”Tf’g—g”F < Z(l/[!)\/n(n— D--(n—1+ l)Cl(t _S)l/2||g||r — 0T,

=1

and

(St = 1)g) (@) = (e(1 + ) (@) — 1)g ()
=Y x@e( + )@\ )g) <Y x(@©(1 +0)"'g(w).

CEW CEW
Since f € Z", there exists a compact interval K C R, [s,t] C K, such that g(w) <
e(1g)(w) for #w < n, if g(w) < 1 for all w. We have
Y x@U+0)"g@) < > x(@1 +C)e(Ix) @)\ o).
CEwW CEwW

The norm is bounded above by

Vn+ 1V =s(1+C)" exp(1K|/2).
We have
(Ri=1)g)@ = > e(x)(0)gw\o).

oCw,0#0

Hence
N
we—sl(y ) Imie—e)
= [ 2ss0tite =Rz~ )’ +

2

= f Aol lH#E =k}< Y e +w1)g($2+w2)>
v
w1+ 7Y

= Z / Mg +&r o1 +op HHEL = k1 }1{#E2 = ko)
Ky Hho=k Y §1 T @17
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x 2e(x?) (62" e(x?) (@222 g (82 + w2)?

2 N
<> (e — 1)<g|2N<k1>|g) — 0@ —5)

k1 <k

because
2
/ A o H{#E = k1 )27ET9Ve (3 2) (&) + o) < tIXI” — 1.
E1tw1#Y

From these results one obtains the second assertion of the proposition easily. [

8.5 Consecutive Intervals in Time
We start with a lemma.
Lemma 8.5.1 Assume s <r < t. Multiply the measure

oot + +
m= <aﬂa02+r2af2+vzaal+r1 Ar4vudy >)‘7T+U| +uvy

by the Borel function

F= 1{t01+T1+U1 C [S, r]} l{t{72+t2+l)2 C [r, t]}
Then
+ +
Fm= F(“ﬂ“az+r2+al+r1 Ary+uy+11+v1 g >kn+v1+uz'

Proof Integrate against a C°-function f, considering the integral
/f(JT,U], e, U2, 0)Fm.
Take ¢ € 19 + 12, €.g., ¢ € U2, then

+ + +
Aty +1y gy 47 = Gy tvo\cloy 47y Ge Z e(c, b)ar2+vz\ca(al+r1)\c'
beor+1p

But

/ f+(n, ...,0)e(c, b)(ana;rzﬂza,ﬁl,z\ca;;lHl)\baTIJrUla;))LnJrUl+U2 =0

as
/Acs(c, Dlr<t.<t}l{s <t <r} :fkcl{r <t.<ti{s <t.<r}=0.

One proves the lemma by induction. g
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Lemma 8.5.2 Assume
hh<h<---<Ity

and multiply the measure

m= <ana;':+‘[1\/afn+un e -a;:ﬂl af1+v1a;>)\n+v1+m+vn
by the Borel function

F =Wio, 440, C 0. 11} - Yt 1,10, C a1, 1al}.
Then

Fm= F(aﬂa;:,-‘rfn-‘r“'-i-al-i-flarn+Un+“'+Tl+Ul a;))‘n+v1+~-+un~

For the proof use the duality theorem in Sect. 5.6.
We consider again u@(Al, Ag, A_1; B). We have shown, in Sect. 8.4, that the
map O(ul): # ™ — I is bounded. So Z(u’, u’) exists (see Sect. 7.1).

Proposition 8.5.1 Fors <r <t we have

%(ui,u;) =%(ut).

N

Proof We have

(f1B(u, u})|g) = / Frul (o2, v, va)ul (o1, 71, V1)g(0)

+ + +
<a7, Ao+ 1, A +02 g 41 A1 +u1 Gy ))‘ﬂ-i-vl +uy-

As, e.g., ul (07, 72, v2) vanishes if toy+m4vy € [7, 1], we may apply Lemma 8.5.1
and we obtain

(f1B(u)., u})lg) = / FHul (o2, 1o, va)ul (o1, 11, V1) g ()M

with
P o+ +
m = (an Uy 415 %) 41, A2 +va A1+ Gy >)‘ﬂ +ui+uy-

If {r,s,t, to4r4:}°* is without multiple points, then we showed in Remark 6.2.1 that
t t
ug(o, 7, v) = u, (02, 12, V2)uy (o1, T1, V1)
with
oy={ceo:r<t.<t}, or={ceo:r<t. <t}

etc. But r?

> +v4v is without multiple points m’-a.e. O
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8.6 Unitarity
The following theorem is essentially due to Hudson and Parthasarathy [36].

Theorem 8.6.1 Assume u’, =u’ (A}, Ao, A_1; B). The mapping
OW): 4 —-T
can be extended to a unitary mapping
US' =T,

if and only if the operators A;, i = 1,0, —1 and B fulfill the following conditions:
There exists a unitary operator Y such that

Ag=T -1,
B+BT=—ATA =—A_ A",

Proof We recall Proposition 6.3.2. For fixed s, the function u; : t > u’, and for
fixed ¢, the function u? : s u§ is of class €', and one has

c.r t
d;uy, = Bu,

(RLus), = Aju,

(RLu;), =0,
oul = —u' B,
(Rfruf)s =0,

(Riu'), = u' A

for j = 1,0, —1. We recall Ito’s formula from Theorem 7.4.1. Assume x;, y; to be
of class €', and that for f, g € J#;(R, ¥) the sesquilinear forms (f|%(F;, G;)|g)
exist in norm and t € R — (f|ZA(F;, G;)|g) is locally integrable, where F; can
be any function in {x;, x;, Rixl, Rix,, R;lx,} and G; can be any function in
{y, 0y1, R:Ityts Riyt’ R;IYt}-

Then t — (f|%B(x;, y;)|g) is continuous and its Schwartz derivative is a locally
integrable function, and this yields

1B, y)Ig) = (FIB(3 %0, i) + B(f, 0v:) + [-1,+1.418)
+(a(®) f|B(D e, ) + B(f, D'y) + Io.+1.418)
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+(a(0) f|B(D:, yi) + B(f, DOW) + Lo 0.¢]a(t)g)
+ (FIZ(D ™ 0, ) + B(f. D™ yi) + 11,04 ]a(t)g)
with
Iij = PR, Ryi) = B(Rxi, RLy,).
We want to calculate the Schwartz derivatives of the functions
t (F12(() " ul)lg)
s> (F18(u. (1)) l8).

The derivatives exist, because # and u T, and the 3¢, R and D operators, applied to
uand ut, map # — I'. We obtain

o (f1B((u) " ul)lg) = (f1Z(u™, Cru)lg) +(a(t) | B(ut, Cou)lg)

+{a®) f|But, Cau)|at)g) + (fIB(u™, Csu)|a(t)g),
A5 (18 (ut, (u}) ") g) = (FI1B(u. Csu™)Ig) +{a(t) | B (u, Cou™)Ig)

+{a®) f|B(u, Crut)|at)g) + (f12B(u, Csu™)|a(t)g)

with
Ci=B+ BT+ ATA,, Cs=B+B"+A_ AT,
Cro=A", + A1+ Af Ay, Co= A1+ At +AAT,,
C3=A3'+A0+A(J{Ao, C7=A0+A(J{+A0A+,
Cs=A] + A_1 + AT Ao, Cs=A_1+ A +A_1A].

The operator €(u}) is unitary if both derivatives vanish, and they vanish if
C;=0,i=1,...,8. The equations C3 =0 and C7 = 0 imply

(1+A3) 1+ A=+ Ag)(1+ A7) =1.
So

T=1+4+ Ay

is unitary. The equations are not independent. We have C; = C4 and C6+ = Cs.
Furthermore

Cr=AT+(1+AJ)AI=AT + T A =T7Cs.

So C; =0 implies A = —TAJ_FI, and we conclude C{ = Cs. O
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Definition 8.6.1 For ¢t < s we define

Ul =(u)".

s
Proposition 8.6.1 Forr,s,t € R we have
U,’ U, = US’.

Proof For both cases s <r <t and t < r < s, the assertion follows from Proposi-
tion 8.5.1. For s <t < r, we calculate

(f1ufurg)=(Uy £I(U) T (Ulg))=(fIULg).

The other variants can be calculated similarly. O

8.7 Estimation of the I';-Norm

Recall from Sect. 7.1
/ n(r. 0,7, v, 0) (@) F (0. 7. v)g(0) = / FH@)(0(F)g) @) =f. 6(F)g)
with
(OF)) @) =) > [ Fle B v)g\a+v)
aCowpcw\a Y
and

— + +
m= <awaa+rar+uag >Aw+u.

So O'(F) is a mapping from %5 (X) = % into the locally A-integrable functions on
X. Extend it to those functions g such that the integral exists in norm for almost all
w and yields a locally integrable function in w.

Recall furthermore

Ff(o,1,v)=F(v,1,0)"
and the relation

(florg)=(0(F*)flg)
for f,ge X .

Lemma 8.7.1 Assume a locally integrable function F : %3 — B(£) and a bounded
operator T : I’ — I" are given such that

T | 4 = O(F).
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Then
TH ¢ =0(F").
Proof Assume h, g € % . Then
(hTg) =(h|O(F)g)=(O(F)hig)=(T"hlg).
As this holds for all g € ¢, we have TTh = O(F1)h. O

Lemma 8.7.2 Assume a locally integrable function F : %3 — B(£) and a bounded
operator T : I’ — I' are given such that

T | # =0O(F)

and there is a function f € I', such that O (F) f exists, i.e.,

/W@WV@anﬂmh<m

forall h € & . Then
OF)f=Tf.

Proof We have, for all h € ¢,

/h*(w)(ﬁ(F)f)(w) do= | fHw)(O(F)h)(w)do=fIT+h)= (h|Tf).
a

Lemma 8.7.3 Assume we have u', = u’ (A;, B) satisfying the unitarity conditions,
and that U! is the corresponding unitary operator. Assume G1, ..., Gy € B(t) and
sS=ty<t] <--- <ty <tyy1 =t,and also that

F(o,t,v)

1
= Z uy, (0%, T V) Grty,_ (Ok—1, Te—1, Uk—1)Gr—1

oyg+o1+-+or=0
T0+T1+ -+ =T
votvu+--tup=v

t t
-+ Gaug (01, 71, V1) Gug (00, T0, o).
Then, for g € X,

O(F)g =U} G U,*

k-1

Gi-1---G2U2G1U'g.
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Proof The case k = 0 is clear. We prove the induction step from k — 1 to k. Put, for
short,

i+1
i

. 1,
u@) =u;" (0, 7, V).

Then split up F by writing

F=Y u)Gr-u()Gu@© = Y ukGF'(o'. 7 0

or+o'=0
Ttt'=t
vp+v'=v
with
F'(o!,7/,v) = > ulk — )Gy_y -+ u(1)Gu(0).
oo++ox_1=0"
o+t -1 =1
vo+- g1 =v’
Put
C=max(|A;ll, i =1,0, =1 |BI; IGill, i =1,....k).
We have

|Fo.7,v)| < C*HFoOr 011,y C s 1)

So it is clearly locally integrable. An analogous assertion holds for F’. For h € ¢,
/ h* (@) (O(F)g) (@) = / Wt () F (0, T,0)g(0)an g 4 ar 0] Pox+o-
Using Lemma 8.5.1, we see the last term equals
f W UV GEF (07, 7', V)8 (0)an s g 000 0er 1170 Voo -

Now following Theorem 5.6.1, the representation of unity gives

(ax g, 1o Oyt v ag ) = /w<“ﬂa;rwrkafk+vk“i)(“wa:ﬂ/af”rv’a;r>'
Put

[ 6P (0" v ) s(@anat s s = (O(GLF ) @) = F(@.
Then

/h+(71)F(0, T, v)g)aras | aryval v

=/h+(ﬂ)u(k)(0k, %, U) f(@)ara™ ox + Tk@gtu ) tug -
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By the induction hypothesis

f=GrU*

Tk—1

...GUgeT.

‘We make the estimate

[ I @] 7@ aa o

= [l | [ s

: /Hh(“)) |7z v)]]s@)]m < oo

+ +
(aﬂ’ ag+taT+UaQ ))\'7'[+U

and note
/ W (@) 0 (k) f) (@)ho = (AU}, £).
Continue with

O(F)g=U/ f =U] GU,}

k-1

Gr—1 -~-G2U;IZG1USt'g. O
Lemma 8.7.4 such that for g € # we have |O(F)g|r < const|g||r and
\O(F)g|lr <const|glf. Let T : I’ — I' the operator, such that O(F) is the

restriction of T to . Then O(F7) is the restriction of T to H . Assume f € I’
such that 6(||F|| )| f e € LA(R). then

Tf=0(F)f.

Proof Assume g, h € ¢, then

(hITg) = (hO(F)g) = / (@) F (0,7, v)g(@m

= fg+(w)F+(a, T, v)h(Q)m=(0(F*)h|g)=(T"h|g)

with
+ +
m= <awaa+rar+uag >kw+u.

So O(F7) is the restriction of T to 7.
We have

[Ih@llFe.zvlls@m <o,

Hence

fh+(w)(ﬁ(F)f)(w)dw=[f+(w)(0’(F+)h)(w)dw=<f|T+h)=(h|Tf).
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As this holds for any & € J# the assertion follows. 0

Lemma 8.7.5 Assume u', = u'(A;, B) satisfying the unitarity conditions and U!
the corresponding unitary operator. Assume G1,...,Gy € B®) and s =19 <t <
s <Ig <tlgy1 =t and

F(o,t,v)

t 1)
- > uy, (0%, T, Uk) Gty (Ok—1, Tk—1, Ug—1) Gi—1

op+o1+--+oxg=0
To+T1+ =1
votvu+---+ur=v

-+ Gaup (o1, 71, 1) G Ul (00, T, Vo).
Then for f € X

O(F)g =U} G U}

1 Gk—1""" GzUttlzGl Ulg.
Proof The case k = 0 is clear. We prove by induction from k — 1 to k. Put for short

. t
u(@) =ug " (01, 1, vp).

Then
F=Y u)Gi---u()Gu@ = Y uk)GF'(o, 7,0
ox+o'=c
w+t'=1
v +v'=v
with
Fo.7.v)= Y utk=1DGii-u(1)Gu(0).

00++0r—1=0"
0+ T =1’
v+ Fuk—1=v’

Go back to the proof of Proposition 4.4.1. Put
C=max(|Aill.i =1,0, =L |BI: |Gil.i =1,....k).
For g € # we have

[(@QFngn - <clglr
[ E Disnl =<l

Forh e %

fh"’(w)(ﬁ(F)g)(w)kw=/h+(7r)F(a, 7, V)¢ ara  caryval Jhato.
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Using the same argument as in the proof of Proposition 4.4.1 the last term equals

/ ]’l+(7‘[)bt(k)GkF/(o‘/’ ‘[/’ U/)g(g)(ana;(Jﬂkafk+uka;+r,arr+ura:;)kn+Uk+u/.

Now following Theorem 5.5.1

<ana;;<+fkatk+uka:’—&-r’af,"‘u,a;) - /<aﬂat—7:+rkatk+uka:)<awa:’+r/ar’+u’a;>.
w
As
/ (o’ v)g@awag,  pavvvag four = (0(F)g) @) = f @)
the integrability conditions are fulfilled and one obtains

/ 1 (@) (0(F)g) @)hy = / I O G f @) 4o i 0 o s
The conditions of the preceding lemma are fulfilled, the last expression equals
(n\U f)=(rU} GkU}t Gy G2U2G U g)
using the hypothesis of induction. g

Theorem 8.7.1 For any k there exists a polynomial P of degree < k with coeffi-
cients > 0, such that, for g € Iy,

[Utg])3, < P —sl)lgl;.

Proof Following Lemma 8.4.1 and Proposition 8.4.1, we have for f €
t N t t 2
WirI( )IUss)= | 1)@+ &) 1 = ke < oo,
Hence f (UL f)(w+ £)*1e < 00 for almost all £. We have

(ﬁ(ué))(a)) = Z /Auug(wl, w2, V) f(wr + w3 +v)

w1 +wr+w3=w

and
(0(uf))(@+8)
= Y [r@tsorauiorhtotraty)

w]+wrtw3=w
§1+&6+6=¢
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= Y (0((),5) fore) @)

E1+E4+83=¢

with
(U5)e, &, (0. T. V) =ug(o + &1, T+ 82, 0),
fa+e0) = fE1+ &6+ 0).
Assume that the multiset {s, , ¢, f5 4t 1, }* has no multiple points and order the set
{G.D:ie&}+{6.0):i ey = {1 iD. ... (@i}

witht; <--- <fand i; € {1,0}. Then

(ui‘)glfz(a, T,v)

13 1]
= Z uy (01, T, v) Ay iy, (01-1, T—1, vi—1) Ay

op+o1+-+oj=0

T+t +u=t

votvui+--+y=v

- Ajug (o1, 11, v) Ay ul) (00, T0, v0).
Using the last lemma we obtain, for h € 7,
O((uy)g, &) = UpAiy -+~ A Ut A U h.
If C =max(||A;|, | Bl, 1), then
#
[0((4)g, )0 - = C* 28ty 1e, C s, BRI

Finally

<U§f|<l,f)|U§f)= / |(Usf) @+ 8| 11 = 1)

2
] T ot = e
E1+&r+&=
= cH3t / Aeto
X Z 1{#5:/(}1{1‘&.4.,52 C[S,t]}||f(§2+$3+w)||2
E1+Er+E3=¢

k
<c*3t Y /,\511{#51 =k 1{ts, C[s,11}
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x f)»sowl{#éo =k —ki}|| f & + o) |

k k
=C"3 %: I <f|<k—k1>|f>'

O

The previous theorem covers the case s < ¢; a proof for ¢ < s can be carried out
in the same way.

8.8 The Hamiltonian

8.8.1 Definition of the One-Parameter Group W (t)

Denote by @ (¢) the right shift on R, and extend it to R,
OW)t,....ty)=(t1+1,...,t,+1).
If {#, ..., t,}* is a multiset, we define
O, ...t} =t +1,....t, +1}°.
In the notation {t1, ..., t,}* =, we write @ (t)t, =1, +t ey Withe, = {1, ..., 1}°.

If f is a function on R, then (O (¢) f)(w) = f(O(t)w). If i is a measure on R,
then ® (¢)u is defined by the property

f (@@Onw) (O() f(w)) = / p(dw) f (w).

If u(dw) = g(w)dw then O ()u(dw) = (O (t)g)(w)dw. Similar notations hold
for K.

Lemma 8.8.1 We have

(©()ex)(dy) = ex—(dy).

If ¢ is function on R, v a measure on R, f a function on ‘R, and | is measure on
R, one calculates

Om(at (@) f)=a*(O0)p)(O0)f),
O (atwu) =at (@MW) (O@)n),
O (aw) f)=a(@@w)(O®)f).
O (a(p)p) =a(@Ne)(O1)u).
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Proof The identities follow directly from the definitions. g

Lemma 8.8.2 If W is an admissible sequence, then (W)Ay_\«, Is a shift-invariant
measure.

Proof According to the considerations in Sect. 5.6, this measure is a sum of mea-
sures, each one a tensor product of measures of the form

A(dtl,...,dtn):fA(dtl, ndy) f, . t) =/dtf(t,...,t).
So it is clearly invariant due to the shift-invariance of Lebesgue measure d¢. g
Upon using the defining formulas, one obtains immediately
Lemma 8.8.3 One has
O@ul =u""

forr, s, t eR.

Proposition 8.8.1 Define a unitary operator ©(t) on I' by f + ©(t)f. The op-
erators U;, s,t € R, form a cocycle with respect to O (t), i.e.

eOmULe(-r) =U!Z].
Proof Use the invariance of
m= <a7r a;+ra,+va3'>)»ﬂ+v
and obtain

/Fer(ﬂ)uﬁj(Oﬂ T, v)glo)m = / [ (O mug(o, T, v))g(@)m

= /(@(—r)f*)(n)MQ(o, 7,0)(O(-r)g)(0)m

= (0= fIU;0(=rg)=(flOrU;O(-r)g).

Proposition 8.8.2 Define, fort € R,
W) =00 U =U"6a);

then W (t) is a unitary strongly continuous one-parameter group on I.
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Proof We have W(0) =1 and
WiE+H)=01+ s)UéJ” =OM)OS)UTO(—s)O()US = W(s)W(t),
and also
Wit =0 o1 =0(-nU;" = W(-n. O
An immediate consequence of Proposition 8.4.1 and Theorem 8.7.1 is

Proposition 8.8.3 The operators W (t) map the space I into itself, they form a
strongly continuous one-parameter group on Iy, and

w117, < PO f I

where P is a polynomial of degree < k.

8.8.2 Definition of a, a* and 3
If ¢ is an integrable function on the real line, we define

O(p) =f<p(t)@(t)dt,

which is, for any k, an operator mapping [ into [}.
If v is a measure on R and f a locally integrable function, symmetric on R, then

(@t f2)(@) =) v f(@\ A\ c).
CEW
We shall use again L. Schwartz’s convention [37], and denote fA by f. So we write

(@t f)@) =) v f@\o).

cew

We set
a=a(ey) = a(0), at =at(ep).

We use Gothic a* in order to distinguish it from the a*(dx) = a™(g(dx)) used in
the preceding text; a(ep) = a(0) = a is the same as before. We have

(@ ) (@) =" eodte) f (tore) = Y _ £0(dte) f () M(dt\c).

cew cew

The duality relation (see Sect. 5.6) becomes

/g(w)(a+f)(w)=f(ag)(w)f(w)/\(w)~
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Lemma 8.8.4 Assume f € L>(R") and ¢ € (L' N L*>)(R). Then ©(¢) maps the
singular measure a* f into an absolute continuous measure identified with its den-
sity, and we have

(@@t £)tw) =Y o(=t)(O(—te) f) (@ \ ©).

cew
The map © (@)a™ can be extended to a mapping I'y, — T_1, and we have
lo@at ], =lelllfin.

We have
/ g@T(O@at f)ty)dw = / (@6 (¢™)g) " (@) f (@)do
with ¢ (t) = ¢(—t). One obtains

(a@)(go)f)(tl,...,t,J:/(p(s)dsf(s,ll 48,0+ 5).
This map can be extended to a mapping I'x — I'i_1, and we have
la@@) f]l 1 <2lel2llflIn

Proof One has
/ ds @(s)O(s) (Z EO(dtc)f(tw\c))V(dtw\c)>

CEW

= f ds () Y £-5(dte) (O(5) f) (twr )M dt )

CEw

= / ds p(—s) Zss (dtc)(@(_S)f)(tw\c))\(dtw\c)

cew

=Y (1) (O(—te) f) (@ \ M@\ 0,

cew

by changing the variable s — —s to get the second equality, and using for the third

[ aseeave = [ oo,
or more succinctly

f ds e, (dz,) = dt..
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So ®(¢) works as a mollifier, as it is called in Schwartz’s theory of distributions,
making a function out of a singular measure. The other results follow by simple
calculations. O

Lemma 8.8.5 Ifyp € (L' N L% (R) and f € L>(R"t1), then

x e R s g(x)
)11, ... 1)) = (O(@) )0, 11, ..., 1) + x)

maps R"T! into L2(R"), and furthermore x +— g(x) is a continuous function
bounded by ”(p”LZ(R) ||f||L2(Rn+l).

Proof We have withe=(1,1,...,1)

l800) = 872z,

:/dt1~--dtn

_f((o,tl,...,[n)+se+y)

< ||¢||iz(R)/dn-~-dtn/ds

X || f(s X0, 1145+ X1,y by A5+ xn)

/dsgo(s)(f((O,tl,...,t,,)—i—se—}—x)

2

2
—fls4yoti+s+Y1, . tn+s+ )|
2
= ||<P||iz(R)/dIO"'dln“f(IO‘i‘XO,---,l‘n +xn)_f(t0+y01---stn+yn)“

— 10120 [ (T ) = TG)) 32,

where 7' (x) denotes translation by x. The bound for ||g(x)|| can be shown in the
same way. g

Lemma 8.8.6 Assume f € Lz(Rg’), and that n € L*(R) is a continuous bounded
function on R\ {0} with right and left limits at 0, or, in other words, 1 is a continuous
bounded function on Ry. If

x eR"™ 5 g(x) e L*(R")
gt ... t)) = (©@mat £) (0,11, ..., 1a) +x)
then

||g(x)”L2(Rn) = (n + 1)”77”00”f”L2(]R”)
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for all x € L>(R™), and x — g(x) is continuous on {(xg, X1, ..., %) : xo # 0}.
We have that the limits g(0£, x1, ..., x,) exist and

8O+, x1,...,x,) — 80—, x1,...,x,) = —(n(0+) = n(0=)) T (x1, ..., x0) f

where T (x) is the translation by x.
Proof We have

(O@ma™ f) 0. t1. .. 1) =ko(to, 11, - tg) + -+ + ko (f0, 11, .. 1)

with
ko(to, 11, ..., tn) = n(—to) f (t1 — to, 12 — to, ..., In — T0),
kl(ZOa tlv ey tn) = n(_tl)f(to - tls t2 - tls ) ln - tl)v
kn(to,t1, ... ) =0(=t) f(fo — o, 1 — Iy, .. Iyl — 1y).
Define

g,-(x)(tl,...,t,,)=ki((0,t1,...,tn)+x)
and first discuss g; with i # 0, for example, g,,. We have
()1, o) =kn (0,11, .o 1) 4+ x) = kn (X0, 11+ X1, .o, by + Xn)
=n0(=Xp — 1) f(X0 = Xp —tn, X1 —Xn +11 —In, ...,
Xn—1—=Xp +In—1 — In)
= (=% = 1) (T (X) f) (—tns t1 = ts ooty — 1y)
with
X' = (X0 — Xp, X1 — Xps e v vy Xne1 — Xn).
From there one obtains

lgn GO < lInllssll £1I.
We have

fdn -~-dtn||kn((0,t1,...,tn)+x)—kn((O,tl,...,t,,)~|—y)||2
SZfdll"‘dtn’n(_xn — 1) —n(=Yn _l‘n)|2

x (T () f)(—tust1 =ty .o tyey — t,,_1)||2
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+2||;7||§O/dt1 iy (T () = TG f (tan t1 =ty ooyt — 1) |

For y — x, the first term goes to zero by the theorem of Lebesgue, and from the
second term we observe that z — T (z) f is norm continuous. So g,(x) and thus
gi(x),1 # 0 are continuous for all x. We have

go(x) =n(—to) f (11 +x1 — X0, 12 + X2 — X0, - . . , In + X — X0).
From there one obtains the result. g
We double the point 0 to {—0, -0}, and introduce
Rg = ]—o00, —0] 4 [+0, co[

with the usual topology, i.e., Ryp = R<o + R>¢. A function f on Ry is continuous,
if its restriction to R \ {0} is continuous and if both limits f(40) exist. We define

Ro=1{0) +Ro+RG+---.
We introduce on R and on Ry the Lebesgue measure A. A continuous function on
R\ {0} which has left and right limits at O can be considered as a function on Ry.
We define the measures ¢+, and, for symmetric functions f on Ry, the operators

a+ = a(esp) and ai = aT (e+0) and shall use similar conventions to those above.
We put

« 1 .1 . 1
80=§(8+0+8—o), a=§(a++a_), a+=§(ai+af).

A §-sequence is a sequence of functions ¢, € CZ° such that

/wn(t)dt =1, /|<pn(t)|dt <C<oo,  supp(¢n) Cl—&n. &l
and g, | 0.

Definition 8.8.1 We term a §-sequence ¢, a symmetric §-sequence, if the ¢, are
real and ¢, () = ¢, (—t) for all n and ¢.

Proposition 8.8.4 Assume we have two functions f and n fulfilling the conditions
of Lemma 8.8.6, then 4® (n)a™ f exists, and

la@mat £ . < lmllooll flIrs;
if @, is a symmetric 8-sequence, then a® (¢,)O (n)a™ f exists, and

a®(g)O(a’ f — a0 (mat f.
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Proof We apply Lemma 8.8.6. We have

(@mat f)(s,t1,....12) =g(5.0,...,0)(t1, ... 1)

and g(s,0,...,0) > g(0+,0,...,0) for s | 0. From there one concludes the exis-
tence of A® (n)a™ f. We have

(@O mat f)(t1,....t) =g(s,....)1t1, ..., 1a)

and g(s,...,s) —> g(0+,0,...,0) for s | 0. From there one obtains the rest of the
proposition. O

Assume ¢, to be a symmetric §-sequence and f € D, then a®(g,)f — af in
the norm of I". If f € C'(R") and ¢, is a §-sequence, then

O(p,) f() = /(p;,(s)f(t + se)ds

9
= —/fﬂn(S)f’(t +seyds > =) 3—50) =—@/)®.

This motivates

Definition 8.8.2 We define
) =—1imO(g),
where ¢, is a symmetric §-sequence.

Proposition 8.8.5 Assume we are given a function n € L*>(R), which is bounded
and C' on R\ {0} and has left and right limits at 0, so the Schwartz derivative of n
equals

an = (n(+0) — n(=0))8 + 3°n,

where 0°n is the continuous part of the derivative. Assume, furthermore, that 9°n €
L*(R). Put

2" ={6wmatf. feL}R")}

and let " ()T denote the space of all semilinear functionals £ (n) — C. Then 3
defines a linear mapping

L") — L")
given by the sesquilinear form on £"(n)
(uld]v) = —lim{u|© (¢, ) |v).
This sesquilinear form is antisymmetric. One has

IO f = (n(+0) — n(—=0))a* f + ©(3°y)a™ f.
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Proof We have
(©ma*glO(¢,)Oma” f)=(0ma*glO (¢, *n)a” f),
where x denotes the usual convolution. As
@ * 0 =@ %0 = (n(+0) — n(—0))@n + @ * 0cn
we continue
= (n(+0) = n(=0))(O (N a*g|O (wn)a* f)+(O (ma*g|O (gy * dem)a™ f).
The second term converges to
(©ma*gle@mna’ f).

For the first term observe that

(©maTglO@n)a™ f)=(a0(n)Oma’glf)
using ¢ = . By Proposition 8.8.4 this expression converges to

(a@ma*glf)=(0ma’gla’f).
In order to show that  is antisymmetric, observe that go,’l is antisymmetric,
(#1) (=) = =g, (1),

and apply Proposition 8.8.4 again. g

8.8.3 Characterization of the Hamiltonian

We recall the resolvent (from Sect. 3.1) associated to the group W (¢).
Definition 8.8.3 For z € C, Imz # 0, the resolvent R(z) is defined by

—i[;Pe¥W(r)dt  for Imz > 0,

RG) = |
O=1470_ W for Imz <o.

The Hamiltonian H of W(¢) is so defined that —iH is the generator of the group
W(t) (see Sect. 3.1). Its domain is the set
D=R@)T,

where z € C,Imz # 0. The set D is independent of the z chosen. The Hamiltonian
is a selfadjoint operator given by the equation

HR@)f=—f+zR(2)[.
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Definition 8.8.4 Furthermore, we set

S(2) _ifooo eith(f)a(f) for Imz > 0,
)= .

+if£)oo e W(t)a(t) for Imz <0
and

—i1l{r > 0})el*+B"  for Imz > 0,
K@) =74 . Bt
+il{r < 0}e' for Imz <0

and
—i [ e eBl O (1)dt for Imz > 0,

R@) =0(k() = -
() (K(Z)) {+i./£)oo elzre—B+t@(t)dt for Imz < 0.

Proposition 8.8.6 We have, for f € 2,

RQf=R@) S
iIR@)aTAIR@) f +iR@)aTAS@) f +iR@A-1S@) f
—iR(z)a™AT|R(2) f —iR(2)aTAf S(2) f —iR(2) AT S(2) f.
The upper line holds for Im z > 0, the lower one for Imz < 0.
Proof Directly from the definition for ¢ > s, considering first the variation in ¢ and
then in s, we have

B(t—s)

ui (o,T,v)=¢e e(o, T,v)

+ ZeB(’_’f)l{tc €ls,1]}A k(o \c, 7, v)

ceo

n ZeB(I—tc)l{tC e [s, 11} Agu (o, 7 \ ¢, v)

CET
+ 3 B e [s, N} A Ul (0. T v\ €)
CEV

=eBle(0, 1,0)

+ Z“Q(G \ec, T, U)AleB("‘_S)l{tc €ls, 1]}

ceo

+ Z ul (0, 7\ ¢, v)AgeP 11, €[5, 1]}

CET

+> ul (0.7 0\ )AL 1P 1 e [5. 11}

cev
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Hence, working with the second formula above since adjoint will reverse the order
of things in a product,

(ué)-‘r(ov T, U) - (u;(U’ T, J))+
=eB (0, 7, v)

n Zegﬂtﬁs)l{,c els,11}AT, (ué”)Jr(U \¢,7,v)

ceo
+ ZeBﬂ’”_”l{tc €s. 11}Af (ug")Jr(a, T\c,v)
CET

n ZGB‘F([C—S)I{IC c [S, []}AT(M§0)+(G’ T,V \ C).

CEV

Assume f, g € # and using the same arguments as in the proof of Theorem 8.2.1
we obtain

(f1Usg)= (fleB("‘)g)JF/ dr({a(r) f1e T AU g)

s

+{a@®) 1P AU a(r)g) + (f1eB " A Ul a(r)g))

and

(FIU) T g)=(r1e" g+ / dr((a(r) f1e®" AT (U g)

+ (a(r)f|eB+(r_‘Y)Asr(U,t)+a(r)g) + (f|eB+(r_S)Af(Ur’)Jra(r)g)).

Finally, for ¢t > 0,
t
(FlUsg)=(fleP"g) + /O dr((a(r) £l AU g)
+{a(r) f1eB AgUSa(r)g) + (F1eB™ A Ufa(r)g))
and, for ¢ <0,
(£1U§e)=(£1(U?)"e)
0
=(f|e*3+’g)+/t dr((a(r) f1eB D AT UL g)
+{a(r) f1eP AT USa(r) )+ (fleP TV AT U a(r)g).

‘We want now to calculate the resolvent for Imz > 0

(f|R(z)g)=—i/0 dteiZ’<f|@(t)U6g)=—i/(; dre' (O (=) fIUSg)
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and consider, for example, the term
0 t
—i /0 drel™ /0 dr{a(r)@ (=) f1eB" AgUfa(r)g)
00 oo
- —i/ dr/ ea(rO(—1) f1eBU AgUfa(r)g)
0 r
Introduce ' =t — r and call it again 7 and continue
00 00 )
= —i/ dr/ dre U a(r)O(—t —r) fleP' AgUja(r)g)
0 0

=i /0 - dr /0 - dteiz(’+r)<a(0)eB+’@(—t) FlA0® () Ufa(r)g)

= (aR(2)*gliAoS(2)g) = i( fIR(2)a* ApS(2)g).
By similar calculations one finishes the proof. U
Corollary 8.8.1 If f € %, we may write

R f =R@)(fo@) +at fi(2)

with
_ +iA_1S@)f for Imz >0,
h@=7+ {—iATS(z)f for Tmz <0
and
o [TiAR@F +ires@)f for Imz > 0,
YT AT R f iAo+ S@)f  for Imz <O.

Definition 8.8.5 The vector space D C I is defined by
D={f=R@(fo+afi): foe . fi e}
Proposition 8.8.7 The resolvent maps & to D:
R@): X — D.
Proof By Proposition 8.8.3

W@ 13, < PA)IF 13,



8.8 The Hamiltonian 173

where P(|t|) is a polynomial in ¢ of degree < k with coefficients > 0. So, for exam-
ple, for Imz > 0

RSy, = [ dresprtmay/ P I

If f e 7, the function f € I}, for all k. The functions a(¢) f, t € R are uniformly
bounded in any I;-norm. Hence R(z) f and S(z) f are in I} for all k. O

Proposition 8.8.8 For f € JZ, we have

TAIR@f +5A0S@)f  for Imz >0,

aR(z)f=S(z)f+!l . L
TAT R@f +1ATS@f  for Imz <.

Proof We first prove the case Imz > 0. We have
(U2, f)@+0) = (U%al) f)(@)
+ 1t € [—1, 01} ((U2 AU, ) (@) + (UL AoU",a(te) £) ()
and

(R@) f)(@+c)

=—i / ” dte ' (OMOUSf)(w+c) = —i / h dre ' (U2, 0(1) f) (@ +c)
0 0

= —i/oo dt(U°, 0 (alte +1) f) (@) —il{te < 0}U,
0

x (A1 f C:odteizt (U,0@1) f) (@) + Ao / jodteiZ’(Uﬁ',(H)(t)a(tc +1) f)(@).
One concludes
(R@F)O+. 11, ... ta) = (S@) f) (11, ..., 1),
(R )O—t1,....t) = (S@ )1, o t0) + AL (R@) [t - 1)
+Ao(S@ f) (1, - 1)
Similarly, for Imz < 0,
(R@[)O+. 11, tn) = (S@F) 1 1) + AT (R@ F) (1 - 1)
+AG (S f) (1, ),
(R@f)O—t1,....t,) = (S@F) (1, ..., 1) O

We start with an Ansatz A for H.
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Definition 8.8.6 Assume we have four operators My, My, G € B(¥) such that
Mf=My, Mi‘=M.,,  G"=G.

Define a mapping D — D' (D7 is the space of all semilinear functionals D — C)

by

~

H=i) + Mat + Mpata+M_,a+G.

The following lemma is a direct consequence of Proposition 8.8.5 and the as-
sumptions about the coefficients.

Lemma 8.8.7 The sesquilinear form
f.ge D> (fIHg) =110+ G)g)+ (af|Mg) + (af|aMog) + (f1aM_1g)

exists and is symmetric.

As already stated in Sect. 4.2.2, we may embed I into DY by the mapping

felrv (geDr (glf).
As D is dense in I , we can embed
Dcrcb
Proposition 8.8.9 Assume f = R(z)(fo +at fi) € D. Then
AHf =—(fo+a"fi) + (2 —iC@) f + M1&" f + MoaTaf + M_1af

with

+B  for Imz >0,
—BT  for Imz <O.

Cl@)=
Then Iflf e I' if and only if
—fi+ M f+ Myaf=0.
Proof We calculate the Schwartz derivative
K(z) =—i8 + 0% (z) = —id + (iz + C(2))x (2)

and obtain (see Definition 8.8.4)

IR@(fo+a” fi) = ~1im&(¢,)6 () (fo +a" f1)
=—1imO (g, xc(2))(fo+a* f1)
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= —lim O (—ig, + ¢n x 3 (2)) (fo + ot f1)
=i(fo+a" f1) — 0% @) (fo+a" f1)
=i(fo+8"f1) - (2 +CQ@) [
Finally
Hf =—(fo+8"fi) + (2 —iC@) f + M1a" f + MoaTaf + M_iaf.

This formula shows that the singular part of H f vanishes if and only if the corre-
sponding equation in the proposition is fulfilled. g

Definition 8.8.7 Define Dy as the subspace of those functions f = R(Z)(fo +
at f1) € D which obey the condition of Proposition 8.8.9, ie., f = R (@) (fo +
at f1) € I', and denote by Hy the restriction of H to Dyf.

Lemma 8.8.8 As H is symmetric on D, itis symmetric on Dy too.

The conditions for the unitarity of the operators &'(u’)(A;, B) were (Theo-
rem 8.6.1) that the operators A;, i = 1,0, —1 and B fulfill the following conditions:
There exists a unitary operator 7~ such that

Ag=7 —1,
Ar=-TA",,

B+BT=—-AA =-A_ A"

Theorem 8.8.1 The operator H fulfills the equation

HRQ@f =—f+zRQ)f ()
forall f € % if and only if
A 1
1 = Mo2 1
M
Ao 0
i—Mp/2
| ()
A1 =M_ ,
i— My/2
. i 1
B=—iG—-M_——— M.
2 i— My/2
As a consequence
i+ My/2

Ti-My2
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If equation (xx) is fulfilled, then R(z) maps & into Dy. The domain D of the Hamil-
tonian H of W(t)Acontains Dy and the restriction of H to Dy coincides with the
restriction Hy of H to Dy, and furthermore Dy is dense in I and H is the closure

of Hp.

Proof Assume at first Imz > 0. By Propositions 8.8.8 and 8.8.9,
i0Rf =—f —iA|SF —aT(1A|Rf +1AoSf) + (z — iB)Rf
aRf =Sf + %AlRf + %AoSf.

Then
HRf=—f+zRf + Ci6tRf + CaTSf + C3Sf + CaRf

with
. 1
Ci=—-1A1+ M + EMOAI,
. 1
Cr=—iAg + My + EMOAO,

. 1
Cy=—1A_1+M_1+ EM_lAO’

1
Cs=—1B+ G+ EM_lAl.

The equations C; = C, = C3 = C4 = 0 are equivalent to (sx).
For Imz < 0, we obtain

10R = —(f —iATSF) +at((A_1Rf + AJSF) + (z +iBT) R,
. 1, I

Again
HRf =—f +zRf +C|aTRf + CHa™Sf + C4Sf + CiRf
with
, 1
Ci=iAt + M + EMOAJ_FI,
/ A+ 1 +
Cy=iAg + Mo+ 5 MoAg,
_ 1
Cg=1A1++M,1+§M,1A+,

1
C,=iBT+G+ 5M,lAtl.
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Equations C| = C}, = C} = C; = 0 are equivalent to (+x) as well, as it should be.
We know already that R(z) maps % into D for Imz # 0. Formula () shows that
R(z) maps % into Dy.

We studied in Sect. 3.1 the following situation. Assume a unitary group U (¢) and
a dense subspace Vy C V. Assume given a subspace Doy C V and that z and 7 are in
the resolvent set of the Hamiltonian, and, furthermore, that R(z) Vp and R(Z) V are
contained in Dg. Let there be given a symmetric operator Hy: Do — V, i.e.

(fIHog) = (Hoglf)

for f, g € Do, and assume that

HyR(2)§ = —§ +zR(2)§,
HoR(2)§ =& +7ZR(2)§

for £ € V.
Then the subspace Dy is dense in V and Dy C D, the domain of H; also

Ho=H [ Dy,

and H is the closure of Hj.
We apply this result to U (t) — W(t),V — I', Vo — £ and finish the proof. [J

Remark 8.8.1 L. Accardi [2, 4] and J. Gough [20] studied the so-called Hamiltonian
form of quantum stochastic differential equations, and arrived at similar formulae.
In particular, a Cayley transform, like that in equation (%), shows up. Writing a
Hamiltonian form for the equations is different from finding a Hamiltonian.

Another representation of the Hamiltonian prior to our representation was found
by Gregoratti [22], who used the ideas of Chebotarev [14]. Chebotarev had obtained
a characterization of the Hamiltonian for the Hudson-Parthasarathy equation with
commuting coefficients.



Chapter 9
The Amplified Oscillator

Abstract We study the quantum stochastic differential equation of the amplified
oscillator. The solution can be given as a series of normal ordered monomials. The
series can be summed with the help of Wick’s theorem. From there one gets an a
priori estimate. As the solution is a % !-process, we can prove that it is a unitary
cocycle. We obtain the Heisenberg equation studied in Chap. 4, and from there an a
posteriori estimate strong enough to calculate the explicit form of the Hamiltonian.
We show how amplification works and how the classical Yule process is a part of
the quantum stochastic process.

9.1 The Quantum Stochastic Differential Equation

A quantum oscillator has the energy levels {nhv:n =0, 1,2, ...}. A damped oscil-
lator has the property, if the oscillator is in level n, then it emits a photon and jumps
to level n — 1, then it emits a second photon and jumps to level n — 2, and so on.
After some approximations and normalizations it can be described by the QSDE

du} 1

—O — —iba" (1)U, —ibTUsa(t) — b T U,

dr 2

Here b and b™ are the usual oscillator operators, but we have carefully distinguished

a’ which only can act to the left, in contrast to an ordinary adjoint such as b, and
is defined by (cf. Sect. 2.4)

(fla’ @) ={a@®) f|.

Its restriction to the one-excitation case has been studied in Sect. 4.2 and in
Sect. 8.3.1.

An amplified oscillator has the property, if the oscillator is in level n, then it emits
a photon and jumps to level n + 1, then it emits a second photon and jumps to level
n + 2, and so on. The number of emissions per time is proportional to the number
of photons. So an avalanche is created. It can be described by the QSDE

d_U(;__-+T t t _l +rrt
T = ibTa'(H)Uy —ibUya(t) be Uy.

W. von Waldenfels, A Measure Theoretical Approach to Quantum Stochastic Processes, 179
Lecture Notes in Physics 878, DOI 10.1007/978-3-642-45082-2_9,
© Springer-Verlag Berlin Heidelberg 2014
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The physical background has been explained in Sect. 4.2. The differential equation
studied here differs from that in Sect. 4.4 and in Sect. 8.3.3 by a scaling factor v/27.

The quantum stochastic differential equation has been studied by Hudson and
Ion [25]. They used another method and obtained the solution as a Bogolyubov
transform of the Heisenberg equation. More explicit is Berezin’s treatment [8]. The
amplified oscillator has a quadratic Hamiltonian and the time evolution can be cal-
culated. There is, however, the inversion of a complicated operator involved. Mandel
and Wolf [32] treat the problem with the help of a master equation. It would be nice,
to compare the different approaches.

Define
r'*=r @I*N)
and, for f € I'*,
LEDY 1/(m!k!>ffm,k<x1,...xm>a+<dx1)-~-a+(dxm>|w>®b+k|0>

m, k=0

with
fmk € L(m) = L}(R™)
and
IF1P=y" 1/(m!k!)/dx1--~dxm|fm,k(x1,...,xm>|2=<f|f>.
m, k=0

The functions in I"* can be considered as functions on 2R x N. Denote by I} the
subspace consisting of finite sums in m and k. We denote by % the subspace of
those functions f, where all f;, x are continuous with compact support and where
the sum over m and k has finitely many terms.

9.2 Closed Solution
The solution can be represented by the series
oo
U =) (=)"Uy,
n=0

with

U’fm:/.../ dy ---dt, Z @a(efbbﬂt”")/zbﬁ”aﬁ"(tn)
S<t] <--<ty <t
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e*bbJr(ln*lnfl)/Zbl?nflaﬁnfl (tp1) - ,e*bb+(lzft1)/2bl5‘1al91 (1)
e—bb (1 *S)/2)’
where, ¥ = £1,
ptt=bt,  bpl=0b,

atl' =4', al=a

and O, denotes normal ordering with respect to a', a
We introduce ordering with respect to ¢, and denote it again by an ordering sym-
bol Q. As a result of Oy a function of ¢1, ..., #, becomes symmetric in t{, ..., 1,

and
1 13 t
f/ dfl"’dtn=©t_/"'/ de; ---dt,
S<h) <--<Ilp<t n' N N

Use the formula
+ _pbt
Db /20 o —bb1/2 _ (D1/2)9
and the time-ordering operator Q; to arrive at

U’z’s _ efbbJr(tfs)/Z

0,0 —/ /dtl Z e 20 (1,) b - .. 1120 (1)1

Consider the expression
f@t, ) =e""?a’ (1)b”

and

F = 0,0 Z e 2p0n M = 00y Y f (1 V) f (01, 90),

The operator @, has as a consequence that the order of a,a’ in expressions to
the right of it does not matter; effectively in such expressions the quantities a, a'
commute. We apply Wick’s theorem (Sect. 1.3) for the orderings with respect to ¢
and to . Ordering with respect to ¢ means normal ordering with respect to b™, b.
We define

Ct,o:t, 0 =[f@.®), f('.9)]({r > '} —1{v > v'})
and consider the fact that in this context a, a’ are commuting quantities, SO

Clt, 03t 07) =M1 20 (g (¢y {117 > 1) ford =1 7=,
1{r >t} ford=—1,0"=1.
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Denote by 3(n) the set of partitions of [1, n] into singletons and pairs. So p € P(n)
is of the form

p= {{ul}, o {wy st e {rm,sm}}.
Define
Fy :@a©t(@§f(tu1al9ul) < fty, ﬁuz))crl,sl < Crpo5m

in which we note that

Crs=C(ty, V15, 05) =Cs .
Then

F=0,0, > > F,.

D1 yeens O pEP ()

Now F), is a function of the pairs (#1, ¢1), ..., (t, ¥,) symmetric in its variables
under those permutations of 1, ..., n, which leave p invariant. So ) F), is invariant
under all. permuFati().ns of (t1,%1), ..., (ty, ¥y), and Q, 201 ’’’’’ 9 ipem(n) Fyisa
symmetric function in #1, ..., t,; we may forget about Q;. We calculate

1 t t
oy, =g, L / / andy YOS R
cYS N 9

1sees¥n pEP ()
_—bbt(i—s))2 1 ! !
=e O, Z Wf / dry---dy
[+2m=n s §
t pt m
X Z @ﬁ(f(tl,ﬁ])...f(tl,191))</ / dtldt22C12>
91,0 §J8 V1,92

—_bbT(t—¢
—e bb™ (t A)/2@a Z
L1+ +2m=n

s (DD

with

t t
() = / dn F(t—s, 1) = / dne 24 (1),
s

N

t t
g(—1)= / dn f (i, —1) = / dne™ a1, )b,
S

N
l t t
D= —@a/ / dridr, Z C12=/f dtidt, 272267 (1)a(tr).
2 S S s<ti <t <t
79]’192 1 2
Explicitly

t U
t  _ —bbT(t—5)/2 1 (t1—s)/2 7 +
Uns=e 2 [, dnet T wn
I+l +2m=n $
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m
x @a(< / [ dtldtge“/2—f2/2a*(r1)a(r2)) )
s<n <<t
t 153
x( / dtle(“s)/za(tl)b> .
S

Using again the formula

+ _pbt
Dbt /20 o —bbT1/2 _ (9129

we obtain

1 t I "
r —(t—11)/2 T + —bbT (t—s)/2
Ups= E L] </ drie a'(t)b ) e
li+lo42m=n $

m
x @a<(// dtldtze“/zf2/2aT(t1)a(t2)) )
s<ti<thr<t
t 153
X </ dlle(tlx)/za(ll)b> .
N

If f eIy, f>0then b U b7 f) and b (U} )Tb*| f) can be considered
as Borel functions > 0 on SR x N which are symmetric on R. We set

o0
r__ t
Ys - Z Un,s’
n=0

o0

()" =3 ()"

n=0

The functions b Y!b**| f) and b+ (U!)*b**| f) are defined, are symmetric and
> 0, and they have possibly the value co. We obtain

Proposition 9.2.1

t
YSt = exp(/ dt]e—(t—tl)/ZaT(t])b-ﬁ-)e—bb*(t—s)/Z
N

x Oy (exp < / / dtldrze’I/Z—’zﬂaT(tl)a(t2)>>
s<t <<t
t
X exp(/ dtle_(“_s)/za(tl)b)
s

t
(Yst)+ —exp </ dre—(@ —s)/za’r(tl)b+>e—bb+(t—s)/2

N

and
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x Q, (exp <// dtldtget‘/z_IZ/zaT(tz)a(t1)>>
s<t)<tr<t
t
X exp(/ dtle_(t_”)/za(n)b).
s

We want to show that b5 Y!b**| £) and b+ (Y!)Th*¥| f) are in I'*, and to give
estimates for their norms. We start with some lemmata.

Lemma 9.2.1 Consider two pairs of quantum oscillators with the usual operators
a,at and b, bt and

T =exp(sa®h™),

with s € C and |s|? < 1.
Then

Ola"B" T b Ta™p™|0) = m!(n + W) Fi (m 4+ 1,n+k+ 1, 1, |s]?)
where 2 F1 is the Gauss hypergeometric function (see [5]).
Proof We calculate

<O|ambne§abbkb+kesa+b+a+mb+n 0)

o
1
= D0 S0l @) 0y 0 (6) 2T oy
I,b=0 ""°

1 21
:ZWM (m+D(n+1+Kk).
0

We use Pochhammer’s symbol

(@)o=1, @p=a@+1D---(a+p—-1)

and obtain
o
= 1 k+1
<O|ambnesabbkb+kesa+b+a+mb+n|0> =m!(m +k)'Z (m+ )l((l’/'l);_ + 1) |S|2l~
=0 ’

O

Lemma 9.2.2 We have
(O|Clmbn T+bkb+kTa+mb+n|O> <Gk+m+ n)’(l _ |S|2>—(k+m+n+1)‘

This estimate is optimal.
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Proof We have

m+D(n+1+k)!
(11)?

=(+D---m+DA+1D)--(n+k+1)

<(+D--l+m+m+1)---(I+m+n+k)

_(+mtn+h)!
N 1 ’

For 0 <x < 1, we have

o0
Z (k+m+n+ l)lxl = _x)—(k+m+n+1)'

l!
=0

This estimate is optimal, as using Theorem 2.1.3 in Askey’s book [5] we have

: rHrrm+n+k+1)
1 a Lnd+k+1,1;x)(1 —x)2mtetl =
Jm 2 Fim - Latk+ 1L 0 =x) Fm+ Ol (n+k+1)

RCET R
T omln+k) O

Lemma 9.2.3 Assume given a Lebesgue square-integrable K : R* — C and con-
sider the operator

L=0, exp( / K (s, t)a*(ds)a(t)dt)

= (l/l!)/-~-/K(Sl,t1)~--K(Sz,lz)a+(dS1)a+(dS1)a(tl)~--a(t1)dt1-~-dt1-
=0

Then L maps LE(R”) into itself, and, for f € L?(R”), we have

LA < (1+ UK las) 171,

5 1/2
K| s = (//dsdt]K(s,z)| )

is the Hilbert-Schmidt norm of the operator defined by K .

where

Proof We have for f, g € LE(R") in easily understandable notation

G
(FILIg) =) 5~ | TG K (i, fnmgopmm
L 11 n!
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with

m = (a(xpnpat (dspalna® ([dyp,a))dxpmdsp -

Using Wick’s theorem

m= > > 2 X ) mev

IC[l,nl #1=l JC[1,n] #J=l @:[1,[]—=1 Y:[1,[]—=J @:I¢—JC

(where — denotes a bijective mapping) and

m(p, ¥, x) = 1_[ (e(xp(iy, dsi))dxgiy l_[ (e(ti, dyyi)))ds;

ie[l,]] ie[l,l]

X 1—[ (s(xi, dyX (i)))dxi.

iel¢

Hence

F(op, w,x)=/?(xl1,n])K(S[1,1|,t[1,11)g(y[1,1])m(§0,Iﬂ,x)
=//dS[l,z]dt[l,z]K(S[l,z],1[1,1])

X /dx[l,,,]\I?((swl(i))iehX[l,n]\I)g((le(i))ierxx*'(i))ie[l,n]\l'
By the Cauchy-Schwarz inequality
2
|F (o, v, 0)|

S//dS[l,l]df[l,l]’K(S[l,lLt[],l])

| 2

/dx[l,n]\l?((swl(,-))iel,x[l,n]\l)

2

X /dS[lyl]dt[lyl]

x g((ty-10)ies xxfl(i))ie[l,n]\l
<IKIZ @D FI%llgl%.

Finally

[(FILIg)| <D == (nr = D)o =1+ 1) = DUK Iyl Flr gl

n
<I>IIK||§15||f||rllgllr-

From there one obtains the result. O
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Use the notation, for f € L(m),

1
at(f)= %fa+(dx1)~-~a+(dxm)f(x1, o Xm)

and

Lf)y=at(f)9) ® |0)

where |@) is the vacuum of the heat bath and |0) is the ground state of the oscillator.
Lemma 9.2.4 Ifg € L'(R) and f € L2(R™), then

a((p)bb+n|f G@ Rm -1 ®b+(n l)|0))

and
|42 1) |7 < nlll £11 2 Fi (—m, —n, 15 lg]?),

where the Gauss hypergeometric function » Fi(—m, —n, 1; ||¢||?) is a finite polyno-
mial in || @||* with coefficients > 0.

Proof We calculate
”ea(tp)bb+n 1) H2 — (flbnea+(<p)beu(<p)bb+rl|f>

=Y (/19%(fla(@)'at (@) £)01B" b6 b(0)
I

<D /1Y mm = 1) m =1+ Dl £
I

x (n(n—1)---(n =1+ 1)’ (n =D
= /1) (=mu(=nyllel*ntll £12
l
=nl|l f1? 2F1(—m, —n, 1; |o]?). O
Proposition 9.2.2 We have for f € L(m) with f > 0 the estimates

|6 Yotk )| < €t —sim, LIS,
|6 (Y B )| < €t —s3m, LRI
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with

m 1/2
C(t —s;m, 1, k) = elFTmHktDi=92 (Z(j +k+ l)!/j!>
j=0

x (1 4+ /1 =5)"\/2F\(=m, —k, 1; DV/kD).

Proof Use the notation
pt))=1{s <ty < [}e*(l*tl)/Z’
Yt =1{s <t < tye= =972,
K(t, ) =1{s <t <t <tje”271)/2,
Then
YS' = ea*(W)b*e—bbJr(t—S)/Z@aeffdtldtzK(t],tz)a*(tl)a(tz)ea(w)b’

(Y_yt)+ _ ecz+(¢)b+efbb'*'(lfs)/Z@aeff dridn K (1 ,tz)a"'(tz)a(tl)eu((p)b.

‘We have

ol =1yl =1 — e,
Putting a = a(¢)/||l¢|l or a(¢) = ||¢|la, Lemma 9.2.2 yields
(Ola(p)"b"e" @ b bH e @P 0t ()" b 0)
< (k+m+n)!(1 —e (7)) ektmnti=s) (i)

We recall the equation, holding for two Hilbert spaces Vi, V, and a bounded
linear mapping A : Vi — V2,

(ker(A))" = image(A™).

Here ker(A) = {v; € V1 : Av; =0}, L denotes the orthogonal complement of A,
and AT is the adjoint of A.

Consider the annihilation operator a(¢) : L(n) — L(n — 1) with ¢ € L(1). The
adjoint of a(¢) is a™ (¢) : L(n — 1) — L(n). We split L(n) into the orthogonal sum

L(n)y=a"(p)L(n—1)dker(a(p)),  f=a"(@)gn+ fa

with g, € L(n — 1) and af;,, = 0. We continue and see

at (@20 = (a7 (@) gno1 +at (@) fui

and finally obtain

f=fh+a @ ficr++ @ @) fo
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with f; € L(i) and a(g) f; =0.
We have

((a™ @) fuzil(@ @) fuzj) =80 3NN fue I

and

n
AP =D 3Nl fu I

j=0

We calculate
| e O 0t @) b £y |
= (fu—j 16l a(@)! @ BE () e OV 4t ()T £, ).
Asat(f,— j) commutes with a(¢) we obtain
= || fues 24016 a (@) 2 @PbF (b+) e V" a7t () b+ |0) = | £ 1122
and by equation (i)
G =] (B e O at (@) B 10)* < Il (G 41+ RptelE D
and, for f € L(n),

[ () e @V pH )|

<> [(BF) e O a* ()bt )|

Jj=0
- c? 12 2j 2\ /2

= cjllfujll = (Zj,nwuzj) (=70l 1 12)
j=0 '

and finally

no,. 1/2
||(b+)"e“+<*">“b+’|f>||5(Z@e(kww_”) /1. (i)

j=0

The expression

0, (exp (// a+(r1)e”/2a(r2)e’2/2dr1dr2>>
s<ri<ry<t

is of the form considered in Lemma 9.2.3 with

K(ri,n)=ls<ri<n< t}e*(VZ*rl)/Z
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1/2
||K||H5:<f/dsdtK(s,t)2) <f—s.

It defines a mapping L (m) — L(m) with the operator norm

and

H@a (exp ( / / at (e’ /za(rz)e_”/zdr1dr2>> <(1+1—5)"
s<ri<ry<t
(iii)
The operator norm
||e—bb+(z—s)/2 ” e < 1. (iv)
For f € L(m)
m
DMt £y e B Lim) @ b"7|0)
[=0
and by Lemma 9.2.4
[e“PPpF )| < VaFi(—m, —n, 1; Dnl £]. v)

By combining equations (i) to (v) we obtain the result for Yst . For (Y s’ )T all goes the
same way. 0

A consequence of the last proposition is the following theorem.

Theorem 9.2.1 We have the explicit formulae
oo
Ul =Y (-)"Up,
n=0

t
= exp(—i f e—(’—“>/2a+(z])dnb+) exp(—bbT(t —5)/2)

N

x O, <exp(— // a+(r1)e”/za(rz)e_”/zdrldrz))
s<ri<ry<t
t
X exp(—i/ a(tl)e_("_s)/zdt1b>,
N

e¢]

(U)"=3_1"(U)"

n=0

t
=exp(i / drje~ " —S>/2a+(z1)b+)e—”’*<f—f>/2

N
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x O, (exp(— // dtldtge"/2_’2/2a+(t2)a(t1)))
s<tj <t <t
t
X exp(i/ dtle_(t_")/za(n)b).
S

The sums Y e o(—)" Ul (bT*| f) and 3 02, i" (U} )TbT| £) converge in norm for
fixed f € L2(R™) and k.

Lemma 9.2.5 For f € L2(R™),ast | s
o0
Slus st Lo
n=l1

Proof Recall

U};gsz/.../ dy ---dt, Z @a(e—bb*(t—tn/Z)bﬂnaz?n(tn)
S<t]<--<tp<t

—bbt(t, — —bbT(th—
X e bb™ (ty tn—l)/2b19n—la79n—1(tnil)_,.e bb™ (12 11)/2b191al91 (1)

% o—bbt —s)/Z).
Hence, for f € L2(R™),

H Uli,sb+k|f> H < Z Hbﬂ" .pP b+k|0) H
191 ,,,,,
X

s

t_
n!

< ). JEFD G m Vn+ 1) m+n) fl
g}

,,,,, Un

—— =" fll

for | = max (k, m). Hence, ift —s < 1/2,for ¢t | s,

iH Ul bt < (=26 —9) 7" =1)lI71 o
n=1
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9.3 The Unitary Evolution

Recall
= / .. / dty ---ds, Z 0, (e—bb+(1—fn/2)bl9nal9n (tn)
S<l <<ty <t DsersOn
e_bb+(tn_tn—l)/2bl9n—laﬂnfl (tp_1) - e—bb+(l2—11)/2b191a191 (t])e—bb+(11—8)/2)
/ / o dty O (e D (b a (1) + ba(ty))
s<t <<ty <t
_thr (tn —lp— ])/2
(b+a* (ta—1) + baty—1)) - - P =2 (b0 (1) + ba(r)))
« e—bb+(f1 —s)/2)‘
Then

- / / dty -+ d, O (e =9 (b*a’ (1) + ba(t)))
S<t] <--<tp <t

« e~ bbT(2—11)/2

(b*a" (12) + ba(1)) ---e PP =002 (5% (1,) 4+ ba(1y))

« efbb+(t7t,,)/2)'

We go back to the measure-theoretic formulation and write
Ufl’s = /(uﬁw)(o, T)a;rafkr,
r\t ~t +
(Un,s) = (un,g)(aa T)ay arhy

with

(u;,s)(a, T) = l{t(7 +1t: C s, t[}l{#a +#1 =n}

e*bb+/2(T*tn)b79n e*bb+/2(tn*tn71)b75‘nfl . ,b§2e*bb+/2(l2*ll)bﬂl

o bt /2(01—5)

and

(@, )0, 7) = (u!, ) (0, 1) = 1ts + 1. Cls, 1[}1{#o +#r =n)
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efbb+/2(ll *S)bﬂle*bb+/2(t2*tl)b172 . pUn-l e*bb+/2(tnfl*ln)b15‘n

efbb+/2(tft,,)
under the assumptions, that {s, t, 5, ; }* contains no multiple points and
{Svtvlo'vt'f}z{s <tl < <tl‘l—1 <tn <t}

and ¥; =1ift; ety and 9; = —1if t; €¢;.
Make the two definitions

00
t_ o\t
MY_Z( 1 Mn,s’
n=0

o
~r __ n~t
il = E i"iy, .
n=0

We want to apply Ito’s theorem, and observe that (O|blu§b+k |0y and
(06! (ut)*b*k|0) are €' functions with values in R.

For our purposes we have to adapt Ito’s theorem. Assume we have two matrix-
valued functions

F = (Fy), G=(Gp), kI1=0,1,2,...:%> >R,
where all the matrix elements are Lebesgue measurable. Define the measure
m(7, 01, T1, 02, T2, p) = (an g, az 4, ey g Pty 41y
and the matrix-valued sesquilinear form
.8 € H(R) - (fIB(F, G)lg) = ([I(B(F.G)),,lg).

(fIA(F, G)k1|g>=/mzl/M!7(ﬂ)ka(01,Tl)sz(Uz,Tz)g(p),

provided the integral combined with the sum converges absolutely.

Theorem 9.3.1 Assume x; and y; to be matrix-valued functions, where all their ma-
trix elements of class €', and that, for f, g € #;(R, R), all the sesquilinear forms
(f1B(Fy, Gy)|g) existsothatt € R (f|B(F;, Gy)|g) is locally integrable, where
F; is any function drawn from {x;, 9°x;, Rlix,, R;lx,}, and similarly G, is any func-
tion drawn from {y;, 0y, Rliy,, R;lyt}. Then t — (f|(B(x:, yi)kilg) is contin-
uous and has as Schwartz derivative a locally integrable function. The Schwartz
derivative is

o fI1B(xs, y1)lg) = (f|e%(3cxta Yt) + 93(]0, 80}%) +1-1,4+1.418)
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+{a®) f|Z(D'xi. y:) + B(f. D' y1)lg)
+ (FIZ(D " %0, ) + B(f, D" 1) |a(0)g)
with
1110 =B(R: %, RLy,) — B(RZ'x, RLy,).

We recall the operators 9¢ and RQE, from Sect. 6.3, and the following properties
of them that will be useful in our calculations:

Lemma 9.3.1 With 8¢ and R'. acting on the upper index t of u’ we have
dul (o, 7) = —bb* /2u (0, 1),
(RL uy), (0. 7) = Wty 4 1,1,) = —ibTul (0, 7),
(RLuy), (0, 7) =ul ™ (ts +1,1:) =0,
(Ry'uy), (0, 1) = ul ™ty 1 +1) = —ibug(o, 1),
(R='uy) (0, 0) =i o, 1 + 1) =
and acting on the lower index s of u',
iul(o,7) =ul(o,7)(bbT/2),
(Riu') (0,7) =ul o(to +5.:) =0,
( ’) (0,7) =u_o(ts +5,1r) =ul(—ib"),
( ’)Y(G, r)=u§,+0(tg,tr +5) =0,
()

(0,7) =uy_o(to, tr +5) = us (0, T)(~ib);

s

then acting on the upper t index of ', we have
35 (it}) (0, ) = it (0, T) (—bb™T /2),
(0, 7) =it +1, 1) =ik (0, T)ibT,
RCAIE Uty +1,1:) =
(R;lﬂ; (0,7) =ity 1 + 1) =il (0, T)ib,
(RZ'%}), (0. 7) =ity tr +1) = 0;
and, finally, acting on the index s of i,

it (o, T) = (bb™ /2)it (0, T)(bbT/2),
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S(o,1) =it oty +5,1:) =0,

(0,7)= ﬁi,fo(t(, +5,t;) = ib+u§,
(0,7) =it (o, 1 +5) =0,

), (0. 0) =it _o(to, tr +5) =ibity (0, T).

Theorem 9.3.2 There exist uniquely determined operators UYI on I'*, whose re-

strictions to * coincide with U!. We shall write U! instead of U' and use the
notation

Ul = (U,‘Y)+ fort <s.
We have
Ulul =U! fors,t,r eR.

The U! form a strongly continuous unitary evolution on I'*.

Proof We want to apply Ito’s theorem to
(uh),; = (016" ulbt)0),
(1) = {01! (u}) "&*10).
We have to show, e.g., that we have a well-defined

c%’((u’)Jr ul).

S *s

But this relation, and the other relations needed for the application of Ito’s theorem,
follow directly from Proposition 9.2.2 and Theorem 9.3.1.
We obtain with the help of Lemma 9.3.1

O B(ul., ul) =0,
hence
(*%j(”lr ”g))kl = (93(”2 ui))kl = (93(”2 e, “)))Jd
- /(”tv)kz (0, Dag azh = B(us)

and so

Ul =(US)" forr <s.

N

In the same way,

Bt@((ué)—ir, u'v) =0
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and
Bl ()") =0.
giving
(@((ui)Jr ui‘))kl = (2 (uj. (“§)+))k1 = .

Therefore the mappings U! and (U!)" have the property that, for f, g € '},

(U Ul = (FIUL(UD Ig) = (flg),

so U{ and (U!)" are the restrictions of unitary operators from I}* to I"*. These
unitary operators we denote again by U! and (U!)™. We have, fors <r <t,

LUy = UL,
If we put for s > ¢
Uy =(U)"
the relation U U] = U! holds for all 5,7, r € R.
The strong continuity follows from Lemma 9.2.5. U

9.4 Heisenberg Equation

Lemma 9.4.1 We have, for s < t,

o (U prul) = %(Uj)er“LUS’ Fia(),

and
s (UlbT(UHT) = —%U§b+(U§)+ +ia(s).
Hence
(U brUf =T +i /0 =912 5)ds
and

oo
lim e /2(Uy) bt Ul = b* +i/ e 2a(s)ds.

—>0o0 0
Proof We want to calculate (U!)b" U!. Define

o,
m=m(z, 01, T1, 02, 12, p) = (An g, Ar, g, Ay 0y Pz 1y 415
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For f, g € Z;(R), we have

(fFI((UHptul),,le) = f mf (016" (ul) " (o1, T)b Ul (02, ©2)bT10)g (p).

With the help of Ito’s theorem, we obtain
9; / m?(n)((ug)Jr(m, )b ul (02, 12)ibbT Ul (02, 12)bT),,8(0)

= f FE 016" (ul) " (o1, 71)
x (m(=b(b*)?/2 = bHbbT 2+ b(b)?)
+atm(i(b?)’ —i(bT)?) + ma() (ibb* —ibTb))u' (02, 72)b™ |0)g ()
= / T () " (o1, 71) (mb™ /2 + ima (1) )ul (02, 2)b™ 10)g ()
or
o (U brUl = (U HTU 2+ ia ().

Integrate the differential equation and obtain

t
(U hH Ul =02 4 f e 2q(r)dr.

N

The second equation of the lemma is obtained in the same way.
One calculates

o
lim 6_1/2(U6)+b+U6 =b" +i/ e*"%a(s)ds. 0

—>00 0

Lemma 9.4.2 Fors,t €R

(U;)+b+USI — e|t—s|/2 (b+ +1[t ds/e—|s/_x|/2a(s/)>'

N

Proof Integrate the differential equations, and obtain for s < ¢

(U;)+b+U§ —=e=9/2p+ +i/t e(tfs,)/za(s’)ds/

N

=elt=9/2 <b+ +i /[ e6=1/24 (s’)ds’)

N
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and

t
U§b+l[§+ —e =9/t _ i/ ds/e(s/_s)ﬂa(s/)

S
t
— e(l‘s)/2<b+ _ 1/ ds/e(s/1‘)/2a(s/)ds/>7
S

and for s > ¢, upon interchanging the roles of s and ¢ in the last equation,
(Ust)+b+Ust =el7N/2 (b+ - i/s e(s/_s)/za(s/)ds’>
t

t
Sy e

N

Lemma 9.4.3 Forr #s,t
[ar, US] = 1i5.0 (U] (=ibT)UY,
and
[UL,a*(dr)] =11, (r) U (—ib)U]dr.
Proof Recall from Sect. 9.3 that
Ul =Y (=)"Up,.
and

to_ t +
U,.s —/ uy, (0, T)a; arky
a

T

and also that uﬁm (0, t) =0 for #0 + #t £ n. Calculate, for s #£ 0, t,

[ar, U,i’s] :/ [ar,a:af]u;,s(a, T)Ar :/ Za;\cars(n te)uy, (0, T)Ar
o,T o,T

ceo
t
= / 15,1 (t)uly (0 + ¢, T)e(r, te)af arhe.
0,T,C
Assume s < r < t, and introduce

1 if {t;4¢,s, 7, t}* has a multiple point,

N(toie) = {

0 otherwise.

As N (ty4-) is a null function, we have, for f, g € Z™,
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(fl[ar. Uy ]lg)

= (1= Ntor) P, (o + € e )P r s

= /(1 - N(t0+‘[))7(n)”f1,s (to +{r}, tr)g(P)(ana:ara;>)\n+r-
Since

u;,s (tcr +{r}, tr) = Z uzz,r(UZa Tz)(—ibJr)”Zl,s(Ul» 1)
ni+ny=n
o1+oy=0
T1+T2=T

we can continue the reckoning with

3 f (1= Ntoy140r0e)) F O, 1 (02, 72) (=i )ud, (1. 71)2(0)

ni+ny=n

+ + +
X <aﬂaazaa1 araga, ))‘n+t1+rz

> / Foou, (o2, ) (=01l (01, TD)8(p)

ni+ny=n
+ + +
x (axag,az,aq az @y Atz 47,

as the integrals over all commutators of a,, and a(‘,"1 vanish (see Lemma 8.5.1) and
N is again a null function. Finally we have

(fllar UL JIe) =D (fIUL(=ibT)Uy, lg).

ni+ny=n

By the results of Sect. 9.2 the sum over n converges, and we obtain the first equation
of the lemma. The second equation is obtained in a similar way. U

We can use the commutator identities to give formulas for the adjoint action of
U! ona and a™ like those above for b and b™.

Lemma 9.4.4 Forr #s,t witht > s
(U arU! = a(r) + 100 (UF) T (=i67)U]
and
Ula®(dr)(U!)" = a™(dr) + 15,0 (UL (—ib) (U} )dr.

With a type of matrix notation we now put all the equations for the adjoint action
together in a succinct form. The index s’ in the proposition below carries with it an
implicit integration over s’.
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Proposition 9.4.1 We have

nH( PN (Voo (Vo b*
(UO) (a(s))Uo_ (Vlo (Vll)sx’> (a(s’))

with
Voo =e'/?,
(Vo)y =i1{0 < 5" < 1}e"=)/25(s — '),
Vip = —il{0 < s < t}e*/?,
(ViD)sy =8(s —5') +1{0 < s' <5 <1} ™)/2,
Furthermore
(i (5 ) o)
10 Viss'/ \a™(ds")
with

Voo =¢'/?,
(Vor)s' = —i1{0 <s' < t}e(t_s/)ﬂB(s —s'),
Vio=il{0 < s < t}e’/?,

ViDsy =8(s —5') +1{0 <5’ <5 < t}e(s’s,)/z.

V can be represented as the solution of a quantum stochastic differential equa-
tion. This equation differs from that in Sect. 4.3 and Sect. 8.3.3 by a scaling factor

of v/21.
Proposition 9.4.2 Define
N = f atds)a(s) = / dsaT(s)a(s);
then N — bb™ is an integral of motion, i.e.,
(U (N —bb*)US =N — bb™.
Proof For an operator A use the abbreviation
A= (U} AU,

Then

t t
(bb™)" = bb™ + / <ds%bs—ia+(ds))(b+)‘+ / dsbs<%(b+)s+ia(s))
0

0
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and

N' = /(a+(ds) +ib'1{0 <5 < t}ds)(a(s) — i(b+)sl{0 <5< t})

t t ¢
=N+i/ dsbsa(s)—i/ a+(ds)(b+)s+/ ds (bb™)’. O
0 0 0

Remark 9.4.1 One obtains in the same way, for s <1,
t
(U HU! = Pt 1 / =24 (s')ds’
s
and
(U (N —bb*) Ul =N —bb™.

Definition 9.4.1 Denote by I the subspace of I'* consisting of those functions
f € I'* for which

£ llre = (1N +bT) | f) < 0.

In the definition, we use (N + bb™), the total number of excitations, because we
want an upper bound on functions, and (N — bb™) leaves things invariant. We need
the following theorem only for even k, and formulate it for simplicity just for that
case.

Theorem 9.4.1 The operators UL, for s,t € R, map each I for k =0,2,4, ...
into itself, and there exist constants Cy such that for f € I" and s,t € R,

|us 7]

klt—s
rp = Cee I f

Proof With the notation

M =N +bb",
we have
(U MUl = (UD) T (2bbT + N — bb™)U!
= (UNT(2bbM)U; + N —bbt =€l 1 AGs, 1).
Define
F(s,0(s") = sign(t — ) ilgs (s)e V2 (1 — el 72,
Then

/ds’|f(s,t)(s/)|2= 1,
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and we consider
A, )= b+ (1—e B N2Vat (£(s,0) (b + (1 —e ) P)a(f (5, 1))
+e F(N —bbT).

The operator A(s, t) maps £ * into itself, and we calculate for g € 2™,

8= Zb+k|gk,m),

the norm
||Ml_1a+(f)b+M_lg ”i*

="Mt (bt M gkm) | -

k,m

< Sk +m 4+ 3D+ D+ Dk +m+ D76 g |3

r*

< S (e +m+3)/U+m+ D) [0 gem)]| 7 <37 gl
‘We have

| M= bt Mg

_ _ 2
=Y | M at (bt MT B (gm) |
k,m
_ _ 2
<Y k4 m A+ DXk 4+ Dk +m A+ D7 B gem) | -

< > )16 1) [ 7 < gl

Similar inequalities hold if one replaces a(f)b* by a*(f)b, or by a(f)b, or by
N — bb™. Hence

M=t AG, Mg

e < (@+3)1Igl 7
One obtains

AAM g =AM "M'AMTIMPAM 3 - M AM R,
SO

H Ak M*kg

e < @+3) (4432 (443 gl = Cellglre
Hence

M A% M <21
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or
A% < M2

From there follows the result as ¢ * is dense in I"*. O

9.5 The Hamiltonian

‘We use the same notation and results as in Sects. 8.8.1 and 8.8.2. Define for t € R
W) =0nU§=U°06(@):

then W(¢) is a unitary strongly continuous one-parameter group on /"*. An imme-
diate consequence of Theorem 9.4.1 is

Proposition 9.5.1 The operators W (t) map the space I} into itself and there exist
constants Cj such that

2
[ W@l < G 1R
‘We shall use the notations and results of Sect. 8.8.3.
Definition 9.5.1 For z € C, Imz # 0, we define the resolvent R(z) by
R —i OOO e W(t)dr for Imz >0,
7)) = .
ifi)oo e“W(t)dt for Imz <O0.
Furthermore we set
s —i [ e W(t)a(r) for Imz >0,
7)) = .
if% e¥W(na@) forlmz<0

and
—il{t > 0}ei@=1Pb"/2  for Imz > 0,
k(D)) =1, o trbbt /2
i1{r < Q}elzt+1bb™/ for Imz < 0
and
=i fy° ei?te=b /129 (1)dt for Imz > 0,

+i [0 ele® 29 (1)t for Imz < 0.

R(2) = 0O(k(2)) :{

Taking into account the a priori estimate Proposition 9.2.2, one proves, as in
Sect. 8.8.3, with a and a™ defined as in Sect. 8.8.2,
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Proposition 9.5.2 We have for f € Z*
R@)f=R@(f +bS@[f+aTb R f).
Corollary 9.5.1 If f € &, then
RQ@)f =R@)(fo+a*b" f1)
with

Jfo=f+8S@f

and

fi=R@f.

Again using the a priori estimate Proposition 9.2.2, the same arguments as in
Proposition 8.8.8 establish the following proposition:

Proposition 9.5.3 For f € JZ* we have
GR(z) = S(z) —i(1/2)bT R(2).
Definition 9.5.2 The vector space D C I'* is defined by
D=|f=R@(fo+atb™fi): foe Iy, fiel}).
We have the following consequence of Corollary 9.5.1:

Proposition 9.5.4 Recall the constants Cy of Proposition 9.5.1; then for |Imz| >
Cy the operator R(z) maps & * into D.

We make at first an Ansatz for the Hamiltonian H. Recall Sect. 8.8.3 and the

space DY of all semilinear functionals D — C. We have in an analogous way
to 8.8.3

bDcrrcb'.
Definition 9.5.3 Define an operator D — Dt by
H=id+atht + ab,
or, equivalently, the sesquilinear form Hon D given by

(f1H|g) = (flidlg) + (abf|g) + (flabg).
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Proposition 9.5.5  The operator H exists and is symmetric. One obtains for f =
R@)(fo+atb™ f1)

So Hf e I'* ifand only if — fi + f =0.

Proof An element in I"* can be represented in the form

f£=Y yamHptat im0y = > 1/AmHbY | fim)
k,m=0 1,m=0

with fi, € L(m) = L2(R™),

LT =Y 1/ framlF oy
and
2 2
||fz,m||L(m)=fdt1~--drm|ﬁ,m(r1,...,rm)| |

Fix an element z € C with Im z # 0, and write « for «(z). One has

R@)f=00)f =) 1/UmYb™ O )| fem)
with

® —il{t > 0}e=U+D/2 for Imz > 0,
K, = .
! i1{r < 0)e+0+D/2  for Imz < 0.

As k; fulfills all conditions for ¢ and 7 in the lemmata of Sect. 8.8.2, and ||«;|[;2 <1,
we can sum up and obtain that @ («)a™ defines a mapping Iy, — I} with

|lewa® £, <2211 flli-1.
and a® (x) also defines a mapping I | — I}* with
|ewat £, < flk-1-

One establishes by arguments similar to those of Sect. 8.8, that for f € D the ele-
ment af is well defined. We calculate for f € D

i0f =—ilimO(g)) f
=—ilimO (¢, *«)(fo+bTa’ fi) = —ilimO (. x«') (fo + bTa™ f1).
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Now
—ig, * k' = —igp, * (—ié + (iz — %bb*‘)/c) =—@p +@p * (z + %bb+)x
and
iéf=—(fo+a+f1)+<z+%bb+)f- O
Definition 9.5.4 Define
Do={feD:f=fi)
denote by Hy the restriction of H to Dy.
Proposition 9.5.6 For f € *
HRG@)f=—f+zRQ)f

and R(z) f € Dy.
Proof By Corollary 9.5.1 we have, for f € Z™* and Imz > 4,

R@)f =R@)(fo+a"b* fi),

fo=f+SQ@f,

Hi=R@)f.
With the help of Proposition 9.5.5 we obtain

Hf=(0+a*b" +ab)f

=—(fo+bTa* fi)+ (z + %bbJr)f +atptf +abf
=—(f+bS@f+a"b R f) + <z + %bbJr)R(z)f

A i
+athT R f +bS@) f — 5bbﬂfe(z)f
=—f+4+zR@Q@)/f. O
Just as for Theorem 8.8.1, we obtain with the help of Proposition 3.1.9,

Theorem 9.5.1 The domain D of the Hamiltonian H of W (t) contains Dy and the
restriction of H to Dy coincides with Hy, the restriction of

H=id+atht +ab

to Dy; furthermore, Dy is dense in I' and H is the closure of Hy.
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9.6 Amplification
The amplified oscillator yields a model for a photo multiplier. Recall the Fourier-

Weyl transform. If p is a density operator on I, then the Fourier-Weyl transform is
given by

W(p)((p’ Z) — Tra.CC pei(a(¢)+a+(rp)+zb+2b+)

for ¢ € # (R) and z € C. The time development of p is given by
p() =Ugp(Ug)™.
Hence
W (p(1))(z, @) = Trace p exp(i(U6)+(a(<p) +at(p) +zb+76T)U}).
According to Lemma 9.4.1 and Lemma 9.4.4, we have
t
(U brul = <b+ +i / ds e_s/za(s)>,
0
(U8 Ta(s)Us = als) +1{0 < s < 1}(U3) b1 U

N
=a(s) +1{0 <s < t}e*/? <b+ ~|—i/ ds’e™ ﬂ)a(s’),
0

(U8) T alo)U} =/ds<p(s)(U(§)+a(s)Ug)

t S
=a(p) + f ds p(s)e*/? <b+ + if ds’e™"?a (s/)).
0 0

Fort — oo

o0
e_’/2(U6)+b+U6 — bt + i/ dse™2a(s) =b* +a(y)

0
with
V(1) = —il{t > 0}e~"/?
and
e_’/z(U(’))Jra((p)U(’) -0,
since
t
e*’/Z/ dse*%p(s) — 0.
0
So

W(p(t))(e—tﬂz’e—tﬂ(p) s Trace peiz(b+a+(1//))+2(b++a(1//)).
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[(b+a™W)). b +a@)]=0,

the last expression can be understood as the Fourier transform of a classical proba-
bility measure p on the complex plane given by

/p(d%.)eizéﬂfg — p(2) = Trace pei-+at +3b* +ath)
So p may be understood as an amplification of p.

Examples

e Assume p = pg ® |0) (0|, where pg is the initial density matrix of the oscillator
and |@) is the ground state of the heat bath,

i(eb4zb™) _ o—l2l?/2

A —z|? )
p(z) = e "> Trace ppe po(z),

p(dg) = (2/7) / Wigner(po) (n)e 2~ dndg,

where Wigner(pg) is the Wigner transform of pg. So p is the Wigner transform
of pg smeared out with a Gaussian distribution.

e Assume p = |0)(0] ® |4) (¥, the ground state of both oscillator and heat bath;
then

p(d&) = (1/m)e €  de.
e Assume a coherent state pg = | (V|
W = e 1B26P0T )
then
p(dg) = (1/m)e €7 g,

the translated probability measure for the vacuum. So we recover 8 with an addi-
tional uncertainty.

9.7 The Classical Yule-Markov Process

The Yule process is a pure birth process. Individuals live forever. For each indi-
vidual living at time ¢, during the period from ¢ to ¢ 4- dz there is a chance equal
dr of having a child. Thus each individual gives birth at rate 1. The state space is
No={0,1,2,...}. If Z(¢) is the random number of individuals at time ¢, then the
conditional probability

Pm,i(t —5) =P{Z(1) =m|Z(s) =1}
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obeys the differential equation

dpmy1,1(t =)

o =—m+ Dpuy1,(t =) +mpy (t —5).

Hence

Pm+1,1(f—s)=f~--/ dsy - dspy_
S<S| < <S8y <t

X e_([_smfl)(m“!‘l)me_(smfl_Sm—[—l)m (m _ 1) .

% e(Sz—Sl)(l+1)(l + 1)6—(1+1)(S1—S)_

For the following discussion it is convenient to introduce the vectors

= +/1/m! b*"(0).

They form an orthonormal basis of L%(R) and

milnm) = 8im,
b+77m =~m+ 1y,
bnm :\/n_'lnm—l-

Consider

U ® = 321/ [ Fimtsevvsp)a™on) a5,

j.m
where @ is the vacuum state of the heat bath, and note that m =1 + j, so we have
Fim(sts .o, 55) = mlul({s1, ..., 5}, 9)Imr)
— (_i)j(nm|e*bb+(f%j)/2b+ .. .b+e*bb+(52*31)/2b+ef(S1fS)m)
— (_i)je—(m+1)(t—Sj)/2\/E, R/ 26—(1+2)(Sz—31)/2
% «/l—i——le_(l"_l)(s'_s)/z.

Now look at the coefficient of n,,. We have

2
r

H(l/j!)[fjm(sl, ...,sj)a+(ds1)~'a+(dsj)q§

=(1/j!)fds1.-.dsj|fjm(s1,...,sj)|2

=/ ds; ~-dsj‘<nm|u§ ({sl, Sl @)nl)‘z =pim(t—5).
S<sp<--<sj<t



210 9 The Amplified Oscillator
Consider 7, = n, ® id and n;" = ;" ® id as operators, and define

Xp =1y s

X, (1) = (U)X, U = U X, U,
Lemma 9.7.1 Write ® =id ® @ for short, then for s <t

(@IU; X UL ®) = pmi(t — )X
1

where (®@| stands for (P| ®id, and |®) =1d ® | D).
Proof We have

(® @ na|U; XUl I @ @) = (@ @, |(US) i Ul I @ )
and

MmUglm ® @) = / (1l |t (0, D) i) af .

[

Hence

(@ @1 |U; X Us I @ P) =/ (M |, (2, D) 1) (i |t (0, B | ) (Plaay | D)

0,7

We have #0 =#t =m —n =m — [, hence [ = n, unless the expression vanishes.
‘We continue with

= [ ol D100 ) 0180 = vt = 5100 -
o

Theorem 9.7.1 If pg is a density matrix on 12, and 0 < t <---<tp,then
Tr((po ® |)(PI X,y (tl)"'Xm;FI(tp—l))me(tp)me_l(tp—l) o X, (1))
= Smym "'8mp,1,m;71]P)ﬂ{Z(t1) =mi,...,Z(ty) =mp}

= X:Bml,m/l : "5m,,,1,m;]71pmp,mpf1 (tp - tpfl) © Pma,my (t2 — tl)Pml,l(l‘l)?Tl
I

where 1 is the initial distribution of the Yule process,
m =P{Z(©0) =1} = (mlpolm).
Proof We carry out the proof by induction over p. For p = 1, we have

Tr(po ® | D)@ X,n (1)) = Tr(po(@|UL X, Uj| @)
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= Tr,Oo(Z Pm,l(t)Xl)
= PmaOTrpoX; =Y 71 pm ().
We calculate

Tr((p() ® |q)><q)|Xm/1 (1) Xm/p—l (tpfl))Xm,, (tp)me,l (tp—1) -+ Xom, (tl))

Ih— t
=Tr po(®|U} X, U} -+~ U,” 2Xm/p71U,

tp—1

p—1 Ip
meU,

)4 -1

t
U Xon Uy @)
T 0 1 Ip—2 Ip—1
= T PO(”zl @, ) Xmyu, @, 02) - - iy, (@, Tpfl)Xm/p,lutp @, tp)
Ip
X Xyt (0, 0) -1} (02, 0) Xmyug) (o1, 0))

+
SR C IV )y S

Here, for t < s, we have
U= / ul (o, 7)at arhy

and
ul(o,7) = (ui)Jr(a, ) = (uf(z, 0))+.

As try4etr,  C [0, fp—1] and tr, C [tp—1,1p], and loy4to, | C [0,7,—1] and
ts, C [£p—1,tp], we may, under the integral, replace (see Lemma 8.5.1)

+
(@ |aT1+"'+Tpao‘1+...+(rp |¢>)\rl+~--+rp
by

+ +
(@ |arl+~-+rp,1ag] +b Oy |¢>)\rl+-~-+rp,1 (@ |arpagp |¢>)Lrp .

We split the integral, and perform first the integral over the second factor to obtain
/uﬁg" @, 1)) X i (0, D)(Plar,al |®) e,
= (@U" " X, U 19) =" Xipm,aty — tp-1).
l
We insert this result into the integral and obtain

ty—
= pmpalty —tp_1) / Tr po (uf) (&, 1) X 0y (B, 72) 10”3 (B, 7p 1)
1

Ih—
Xyt X1 Xyt (0p1.0) -} (02, ) Xy (01, )
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+
(@ |a,1+...+fp71a01+.,_+0p71 |®>)\‘Tl+'“+tp—l .
Using
Xm’pilemefl = Smp,m’pflgmpfl,lxmp,l

one finishes the proof. g

Corollary 9.7.1 We have by the result above, that for t| < --- <tp

| Xon, 1) Xy ()| @ @Y | 7. =B Z(1p) = ... Z (1) =my ),

where ) is the probability distribution of the Yule process starting at | at time 0.



Chapter 10
Approximation by Coloured Noise

Abstract We show that the Hudson-Parthasarathy equation can be approximated
by coloured noise using the singular coupling limit.

10.1 Definition of the Singular Coupling Limit

We recall the Hudson-Parthasarathy quantum stochastic differential equation
(QSDE)

QU@ = Aa" (OU@) + Aga" (DU ()a®t) + A_ U ()a(t) + BU (1),
U@ =1

where A; (i =—1,0, 1) and B are in B(¥). Assuming that U (¢) is a power series in
a and a™t, we write

wU@)=:K@®)U():
K (1) = Ara" (1) + Aoa’ (a(t) + A_a(t) + B,
where :- - -: stands for normal ordering, and is also denoted by Q, - - -. This is Ac-

cardi’s normal ordered form of the QSDE. The solution was given by an infinite
series in Sect. 8.2:

U(t)=1+2/--~/ dry - dtg: K (ty) - - - K ().
0

n=1 < <-<tp<t

Recall
H = (R, ).

If f,g €, then (f|U(t)|g) is well defined, as the infinite sum on the right-hand
side contains only finitely many terms.
Quantum white noise is called “white”, because the correlation function

(Dla(s)a™ (dr)|0) = es(dr),
W. von Waldenfels, A Measure Theoretical Approach to Quantum Stochastic Processes, 213
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© Springer-Verlag Berlin Heidelberg 2014


http://dx.doi.org/10.1007/978-3-642-45082-2_10

214 10 Approximation by Coloured Noise
or, again introducing a ™ (df) = at(tde,
(Bla(s)a’(O)|B) =8 —s)

and the §-function has a white spectrum, i.e., its Fourier transform is constant.
“Coloured” noise means, that the spectrum of the correlation function is not white.
We will understand by coloured noise that we make the replacements

a(t) = a(e'),
a'(t) = a*(¢").
at(dt) = at(¢")dt,
where ¢ is a complex-valued continuous function on the real line, and
¢'(s) =g(s —1).
Then we define

a(y') = / ds7 ()a(s),

a® () = / ds¢' (s)a’(s) = / ds¢' (s)a™ (ds).
So
a(e'): H — 2, (a(gof)f)(tl,...,zn)=/dt¢f(to)f(to,t1,...,tn)

at(e'): 4 - A, (a™ (") f)tr, s t) =@ @) f 2y oo ty) + -+
+(,0t(ln)f(ll, sy tn—l)-

The quantities a(¢’) and a™ (¢") are called coloured noise operators. The correla-
tion function is

{@la(p®)a™ (¢")10) = /dra(r — Do —s5) =k(t =)

and its Fourier transform is

2

’

/dtei‘”’k(t) = ‘fdtgo(l)eiwt

a function vanishing at oco.
We want to perform the singular coupling limit limit already used in Chap. 4,

and put
p 1 [(s—t
§05(S) =—-@ .
€ €
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For ¢ | 0, one obtains

PL(s) = y8:(s) =y8(s — 1),
a(pl) — va) =va(),
at () = yat () =yat @,

14 =_/§0(S)dS-

Their correlation functions are
@la(pl)a™ (o)1) = ket —5),

ke(t —s) = / dr @, (N (Ndr = ket —5),

kot — 5) = ék(t;s> N (/ drk(r))S(t _ ).

/drk(r) =yl

10.2 Approximation of the Hudson-Parthasarathy Equation

We investigate for ¢ | O the solution of the differential equation

0/ Ue(t) = He (1)U (1),
U:(0) =1,
He (1) = Mya™ (¢l) + Moa™ (¢l)a(el) + M_1a(e}).

Theorem 10.2.1 Assume
2
ol [ atloiol/2 <1
Thenfore | Oand f,g € X,

(flU(]g) = (fIU®)]g)

such that U (t) satisfies a QSDE with right-hand side K (t) of standard form, which
can be explicitly give as

U =:KnOU@):, K(t)=Aa"(t) + Apa" (Ha(t) + A_ja(t) + B
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with
Y ly > Mo 7
Ay My, 0= ; A1=M-_, ,
1 — kM 1—xMy 1 — kM
K
B=M_, M,
1—«My
and

y=/dt(p(t), K=/ook(t)dt=/oodt /ds@(s—t)ga(s).
0 0

We use a trick common in quantum field theory and introduce artificial time
dependence in the M;, and so we write M;(¢) instead of M;. Then we define

H (1) = My(t)a™ (pL) + Mo()a™ (p})a(el) + M_1()a(e}).
Lemma 10.2.1 Assume t, > --- > t1, then

He(ty)- - He(t)= > OpL(h) - L(Iy):
{llsm;[m}emn

We denote by B3, the set of all partitions of [1, n]. We put

L({n}) = He(n1),

and, forl > 2,

L({t1,....1})
= (Mo(ty) - Mo(t2) My (t1)a™ (@) + Mo(t) - - Mo(t)a™ (¢! )a(el!)
+ M_1(t)Mo(ti—1) - - Mo(t)a(@l) + My () Mo(11—1) - - - Mo(t2) M1 (1))
X ket —t1—1) - -ke(t2 — 11).

Oy is the time-ordering operator for the M; and the k(t; —t;), i.e., all monomials in
M; are ordered in such a way that the first factor is dependent on t,, and so on down
to the last one on t, and similarly k(t; — t;) becomes k(tmax (i, j) — tmin G, j))-

Proof We perform the proof by induction. The case n =1 is clear. We proceed
from n — 1 to n. For simplicity we drop the indices ¢ and write a(gpéj ) =aj and

t . . .
at(pd) = a}". Remark, that the a; and af inside normal ordering :- - -: commute.
Then

H(ty)H (ty—1) --- H(11)

= (Mi(t)a,} + Mo(t)a,fan + M_1(t)an) > OpL(J)-+ L(Jp):
i, Jp}egpn—]
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=0 Y ((Mita + Mo(t)a;fan + M_y(ta)an) L(J1) -+ L(Jp):
{11 11111 J])}Emn—l
+ (Mo(tn)a,f + M_y(tn))[an. :L(J1) -+~ L(Jp):])

=0, Y <:L({n})L(J1) - L(Jp):

{Jl ----- Jp}E‘anl

+ (]MO(tn)a;r + M—l(tn))

P
X Z:L(Jl) o L(Jj—D)[an, LUN]LJj41) - --L(J,,):).
j=1

Now
(Mo(tp)a, + M_i(tn))[an. L({11, ..., 1})]
= (Mo(tw)a,, + M_1(ty))(Mo(1y) - - - Mo(t2) M1 (11)
+ Mo(t) - - - Mo(t2) Mo(t1)ar )k (ty — 1)kt — t—1) -+ - k(12 — 11)
=L({ta.11,....11}).
So

H(t)H (tn—1) --- H(11)

=0, > <:L({n})L(Jl) o L(Jp)

{Jl,m’jp}emnfl

p
+ > L) LU )DL(J; + {n}) L(Jj41) - L(J,,):).
j=1

As any partition of [1,n] contains either n as a singleton, or is contained in an
element of a partition of [1,n — 1], one obtains the result. O

Lemma 10.2.2 Write, for I C [1,n], #I =1,
1 t
P(I)(n:l—,@,/ dy -t LA 1)
. 0
then, if #1; = n;,
/ dty - diy Holt) - - He(11)
O<ty <<ty <t

oo !
_ Z %@t;PU},)(z)‘~P(11)(l‘)1~
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Proof As
> OpLUD - LUp):i= Y. Ox(0(LU) -+ O (LU))):
{I1,....1p} By {I1,....1,}eB,

is symmetric in ¢q, ..., t, we obtain

| ity iy Helty) -+ Ho(n)
O<t)<---<ty <t

t t

=—/-~- d---dt, @ Y O (LUD) O (L))
1o Ip}€B O

We split partitions as
T =T, + B,

where 3/, is the set of non-overlapping partitions, and 3/, is the set of overlapping
partitions.

Lemma 10.2.3 We have

/ > L) LUp):
O<ty<---<tp<t

{11 ~~~~~ 1]7}E§33;/1

= Z / dsq ~~dsp:an(sp,sp,1)
0

ni+tnp=n <§|<--<Sp<t
X Fl’lp,1 (Spfl s sp72) e Fnl (S] , 0)
with

F'I(Sar):/ dtl'd[]_lL({S,tl_l,.,[1}).
<ty <-<tj_1<S

Proof If {Iy, ..., I,} €%, then it is of the form

Il=[15n1]""’]p=[n1+"'+np—17n1+"'np=n]'

Put
=0ty tyy—-1="tn -1, thy =51,
Ini+1 =121, -5 Inj4ny—1 =2.np—1, tni+ny = 52,
tﬂl+“'+"p—1+1 =Ipls--eslp—1= tp,np—ly Ih =Sp,

and obtain the result. O
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Lemma 10.2.4 Assume, that the M; are independent of the t;, then for ¢ |, 0

/ > L) LUp):
O<ty<---<ty <t

{11 ~~~~~ lp}E‘ﬁfl
- Y / dsi - +dsp:Gp,(sp)Gn,  (Sp—1) -+ G, (51):
ny 4t p=n O<sy<--<sp<t
with
Gi(s) =« (My ' Myya™(s) + Myly Pa™ (s)a(s)
+M_ M 'Va(s) + M_ Mg Mi1{l > 2))

and

o0 o
:/dtgz)(t), K:f k(t)dt:/ dt/ds@(s—t)go(s).

0 0

Proof

Fz(S,r)=/ dry - dy_i L({s, ti—1, ..., 11})
r<ty<--<tj_1<s

- / dry iy (ML Myt (gf) + Mba™ (02)a(oh)
rty <ty <3
+M5a(g}!)
+ M MET2 MO > 2 ke (s — ) ke (t—1 — f1—2) -+ ke (2 — 11).
This converges for ¢ | 0 to
Gi(s) ="M (M) Myya™ (s) + M|y *a™ (s)a(s)
+ M_ My Yas) + Moy MM 1T > 2)). O

Lemma 10.2.5 For ¢ | 0, the contribution of the overlapping intervals converges

/ Z :L(Iy) - L(Ip): — 0.
O<ty <<ty <t

{1, Ip}ePy

Proof We obtain an upper estimate if we replace M; by ||M;| and ¢ by |¢|. In
order to simplify the notation, let us assume that the M; > 0 and ¢ > 0. We have
y >0, and k = y2/2. In Lemma 10.2.1 we need the operators @, only to arrange
the M;. As the M; commute, we may forget the O, and can assume that the M; are
independent of ¢. We put, for #/ =1,

Pi(t) = P(I)(@).
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Then
/ dtl"'dtn Ha([n)"'Ha(tl)
O<ty<---<ty<t

- > %:Pnp(t)n-Pn,(t):

(n1,..csnp)ing+-+np=n
since the number of partitions of » into subsets of n1, ..., n, elements is

n!

plny!---np!

Going back to Lemma 10.2.2, we observe that

t
P](t):/ dtl--~dt1L(t1,...,t1)—>/ ds G (s)
O<ty<--ty<t 0
and

f dty - diy Ho(t) - He(11)
O<ty <<ty <t

:/ de ---dt, Z L) ---L(Iy):
O<ty<---<ty<t

..., Ip}eBy
1
= Z — 1Py (1) -+ Py, (1):
p!
(n1,....np)ny+-+np=n
] t t t
-— > :/ dspan(sp)/ ds,,_lG,,]H(sp_l)m/ dty Gy, (s1):.
P.n1+”_+np:n 0 0 0

Hence

/ > L)L)
O<ty <<ty <t

{11,---,11)}65135{

:/ > L)L)
O<ty<---<tp<t

{I,.... I, }€PBy
_/ Z L) ---L(Ip):
O<ty<--<tp<t {n,..., Ip}qu;l
— 0. -
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Proof of the theorem We have the iterative solution

o]

vi=1+y [ dty-dy He(6) - Ho (1)),
O<ty <<ty <t

n=1

We go back to Lemma 10.2.2, and assume that M; > 0 and ¢ > 0. Then

> 1
(IUDIg)=(fIL+Y " D =Py @) Py, (1:g)

n=ln;>l:nj+-+np=n

21
ﬂm+zﬁﬂmm

p=1
with
00 © t
P(t):ZP;(t):Zﬁ/O dt;---dt; L1, ..., 1)
=1 =1
o0
=S [ ) + M aet)
=1 YO<ti<-n<t
+ Mo My a(el) + Moy MU > 23 M)
X ke(ty —tj—1) -+ -ke(t2 — 11).
Recall

y:/dt(p(t), K:/wk(t)dt:/wdt/dSE(s —1)(s).
0 0

As we assumed ¢ > 0, we have y > 0 and x = y?/2. Assume f and g are two
continuous functions of compact support with 0 < f, g < 1, and denote by e(f) the
function

e(f):R—C, (e(N) s -sty) = f(11) - f(tn).
Then

@UﬂUdﬂkwn=e”m<l+§:P@UV)

p=0

where Py, (1) arises from P(7) by replacing a™ (¢}) by (f, L) and a(¢!) by (¢!|g).
So

Pen=Y [
=179

(M5~ M F1) 4+ MY F Lt ot ) + M M ot g)

<t <--n<t
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+ Moy My > 28M ke (6 — t1—1) - ke (12 — 11)

oo
<ty TNy Mg M+ Mo+ y MoMgT + Mo MG = 2) M)
=1

—t—(yM 2 M, M_ MY e Mo My).
1—KM()(V 1+y Mo+yM_My ~ +xM_y 1)

So for k Mo = My [dt o(1)?/2 < 1,

(e(H|U:(0)]e(g)) < oo.

Remark that any continuous function > 0 with compact support on R can be ma-
jorized by a function of the type e(f).

We proceed now to the general case. Consider for f, g € J#, the expression
(f1Us(2)|g). It can be majorized by replacing M; by ||M;||, and ¢ by |¢|, f by
Il £l and g by ||g]|. The preceding discussion implies that, for

IIMollfdt|<P(l)|2/2< 1,

we may take ¢ | 0 behind the sum and the integrals and obtain, by Lemmata 10.2.4
and 10.2.2,

NG GIES S /0 dsy - -ds,
<s|<--<Sp<t

n=1n;>0,n1+-+np=n

X :Knp(sp)Knp_l (sp—l) cee Km (s1):18)

o]

(f1 dsy---dsp:K(sp)K(sp—1) - K(s1):]g)

p=0 O<sy<-<sp<t

with

K(s)=Y_Gi(s)
=1

K TN (MY Myyat(s) + My 1PaT (s)als)

M

-
I

1

+ M_ My Va(s) + Moy My M 1T > 2))

2 J—
4 n lyl"Mo 4
S Dakh [y A p———
[ty O T T, WA M e )
Mo — M
T Temy O
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Remark 10.2.1 1f one makes the replacements
M; = —iM;,
y=1
Kk=1/2

one obtains the essential part of the formula in Theorem 8.8.1.

Remark 10.2.2 Similar calculations involving overlapping and non-overlapping
partitions have been performed in an old paper by P.D.F. Ion and the author [26].
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