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Preface

Let us start by considering a finite set of operators ax , called annihilation operators,
and a+x , called creation operators, indexed by x in the finite set X. They have the
commutation relations, for x, y ∈X,

[
ax, a

+
y

]= δx,y
[ax, ay] =

[
a+x , a+y

]= 0.

First we realize these operators in a purely algebraic way. We define them as gen-
erators of a complex associative algebra with the above commutation relations as
defining relations. We denote this algebra by W(X). It is a special form of a Weyl
algebra. A normal ordered monomial of the ax, a+x , x ∈X is what we call a mono-
mial of the form

a+x1
· · ·a+xmay1 · · ·ayn .

The normal ordered monomials form a basis of W(X). This means any element of
W(X) can be represented in a unique way according to the formula

∑
K(x1, . . . , xm;y1, . . . , yn)a

+
x1
· · ·a+xmay1 · · ·ayn,

where K is a function symmetric both in the xi and in the yi .
We can then move on to consider a continuous set of annihilation and creation

operators, e.g., ax, a+x , x ∈R, with the commutation relations
[
ax, a

+
y

]= δ(x − y)
[ax, ay] =

[
a+x , a+y

]= 0

where δ(x−y) is Dirac’s δ-function. These operators are harder to define rigorously.
One possibility is to use the integrals

a(ϕ)=
∫

dx ϕ(x)ax

v
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a+(ψ)=
∫

dx ψ(x)a+x ,

where the arguments ϕ and ψ are square-integrable functions. Then the non-
vanishing commutation relations read

[
a(ϕ), a+(ψ)

]=
∫

dx ϕ(x)ψ(x).

Everything in this context can be well defined using what is called Fock space.
Another way to approach the problem was chosen by Obata [35]. He uses an

infinite system of nested Hilbert spaces, first defines ax , and then the adjoint a+x in
the dual system.

In quantum field theory, one uses for operators the representation developed by
Berezin [8]

∑

m,n

∫
· · ·
∫

dx1 · · ·dxmdy1 · · ·dynKm,n(x1, . . . , xm;y1, . . . , yn)

× a+x1
· · ·a+xmay1 · · ·ayn, (∗)

where Km,n might be quite irregular generalized functions. The multiplication of
these operators can be performed by using the commutation relations. Berezin pro-
vides for that purpose an attractive functional integral.

Another way to perform the multiplication of these operators is to define a con-
volution for the coefficients K , using the commutation relations formally, and then
to forget about the ax and a+x and work only with the convolution. This can be
done in a rigorous way. This is the theory of kernels introduced by Hans Maassen
[31] and continued by Paul-André Meyer [34]. These kernels are therefore called
Maassen-Meyer-kernels. The theory works for Lebesgue measurable kernels [41].

We now mention the usual way of defining a(ϕ) and a+(ϕ). Denote by

R= {∅} +R+R
2 + · · ·

the space of all finite sequences of real numbers, where we use the + sign for union
of disjoint sets. Equip it with the measure

ê(λ)(f )= f (∅)+
∞∑

n=1

1

n!
∫
· · ·
∫

dx1 · · ·dxnf (x1, . . . , xn),

where the function f (x1, . . . , xn) is supposed to be symmetric in the xi . The notation
ê(λ) is used because this is essentially the exponential of the Lebesgue measure λ.
Then Fock space is defined to be

L2
s

(
R, ê(λ)

)
,
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where the letter s stands for symmetric. If L2
s (R

n)= L(n) is the space of symmetric
Lebesgue square-integrable functions on R

n, then

a(ϕ) : L(n+ 1)→ L(n),

(
a(ϕ)f

)
(x1, . . . , xn)=

∫
dx0ϕ(x0)f (x0, x1, . . . , xn)

and

a+(ϕ) : L(n)→ L(n+ 1),
(
a+(ϕ)f

)
(x0, x1, . . . , xn)

= ϕ(x0)f (x1, . . . , xn)+ ϕ(x1)f (x0, x2, . . . , xn)+ · · ·
+ ϕ(xn)f (x0, x1, . . . , xn−1).

Thus a(ϕ) and a+(ϕ) can be defined on the pre-Hilbert space

∞⊕

n=0,f

L(n)⊂ L2
s

(
R, ê(λ)

)
,

where the suffix f means, that any element f = (f0, f1, . . . , fn, . . . ) has components
fn = 0 for sufficiently large n.

This approach is based on the duality of the Hilbert space L2
s (R, e(λ))with itself.

We use Bourbaki’s measure theory [10] and employ the duality between measures
and functions. The space R is locally compact when provided with the obvious
topology. Use the notation Ms(R) for the space of symmetric measures and Ks(R)

for the space of symmetric continuous functions of compact support. We can now
define, for a measure ν on R and a symmetric function f ∈Ks(R),

a(ν) :Ks(R)→Ks(R),

(
a(ν)f

)
(x1, . . . , xn)=

∫
ν(dx0)f (x0, x1, . . . , xn)

and for a continuous function ϕ with compact support in R

a+(ϕ) :Ks(R)→Ks(R),
(
a+(ϕ)f

)
(x0, x1, . . . , xn)

= ϕ(x0)f (x1, . . . , xn)+ ϕ(x1)f (x0, x2, . . . , xn)+ · · ·
+ ϕ(xn)f (x0, x1, . . . , xn−1)

which is essentially the same formula as above.
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By making use of the δ-function we have raised both a conceptual and a semantic
problem. Denote the point measure at the point x by εx , with

∫
εx(dy)ϕ(y)= ϕ(x).

In the physical literature, the δ-function can have three different meanings corre-
sponding to the different differentials with which it is combined:

δ(x − y)dy = εx(dy)
δ(x − y)dx = εy(dx)
δ(x − y)dxdy =Λ(dx,dy),

where Λ is the measure on R
2 concentrated on the diagonal and given by

∫
Λ(dx,dy)ϕ(x, y)=

∫
dxϕ(x, x).

We will use both types of notation: one is mathematically clearer, the other one is
often more convenient for calculations. In mathematics one very often uses δx for
the point measure εx . We tend to avoid this notation.

Now we can define easily

a(x)= a(εx) :Ks(R)→Ks(R),
(
a(x)f

)
(x1, . . . , xn)= f (x, x1, . . . , xn).

The definition of the creation operator is more difficult. Consider the measure-
valued function

x→ εx

and define

a+(dx)= a+(ε(dx)) :Ks(R)→M (R),
(
a+( dx)f

)
(x0, x1, . . . , xn)

= εx0(dx)f (x1, . . . , xn)+ εx1(dx)f (x0, x2, . . . , xn)+ · · ·
+ εxn(dx)f (x0, x1, . . . , xn−1),

where the result is a sum of point measures on R. With the help of these operators
it is possible to establish a quantum white noise calculus.

We have the commutation relation

[
a(x), a+(dy)

]= εx(dy).
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There is an important operator called the number operator informally given as

N =
∫

R

dx a+(x)a(x).

The differential of the number operator can be defined rigorously by

n(dx)= a+(dx)a(x),
(
n(dx)f

)
(x1, . . . , xn)=

n∑

i=1

εxi (dx)f (x1, . . . , xn).

The normal ordered monomials have the form

Mlmn =M(s1, . . . , sl; t1, . . . , tm;u1, . . . , un)

= a+(ds1) · · ·a+(dsl)a+(dt1) · · ·a+(dtm)a(t1) · · ·a(tm)a(u1) · · ·
× a(um)du1 · · ·dun.

We define a measure on R5 by

mplmnq =m(x1, . . . , xp; s1, . . . , sl; t1, . . . , tm;u1, . . . , un;y1, . . . , yq)

= 〈∅|a(x1) · · ·a(xp)dx1 · · ·dxpMlmn(s1, . . . , sl; t1, . . . , tm;u1, . . . , un)

a+(dy1) · · ·a+(dyq)|∅〉.
Fix a Hilbert space k, and denote by B(k) the space of bounded operators on it.
Consider a Lebesgue locally integrable function

F = (Flmn)lmn∈N3 :R3 → B(k)

Flmn = Flmn(s1, . . . , sl; t1, . . . , tm;u1, . . . , un)

which is symmetric in the variables si , ti and ui , and two functions f,g ∈Ks(R, k),

f = fp(x1, . . . , xp)

g = gq(y1, . . . , yq).

We associate with F the sesquilinear form B(F ) given by

〈f |B(F )|g〉 =
∑ 1

p!l!m!n!q!
∫

mplmnqf
+
p Flmngq

where f+ denotes the adjoint vector to f . This formula may look terrifying, but
it becomes more manageable by using multi-indices. It gives to Berezin’s formula
(∗) above a rigorous mathematical meaning, and it has the big advantage that it is a
classical integral, so that we have all the tools of classical measure theory available.
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These considerations can easily be generalized from R to any locally compact
space X, and to an arbitrary measure λ on X instead of the Lebesgue measure. We
will need that in Example 2 below.

The δ-function, or equivalently the point measure ε0, can be approximated by
measures continuous with respect to the Lebesgue measure. If ϕ ≥ 0 is a continuous
function of compact support on R, with

∫
dx ϕ(x)= 1, put

ϕζ (x)= 1

ζ
ϕ

(
x

ζ

)

and

ϕxζ (y)= ϕζ (x − y).
Then for ζ ↓ 0

ϕxζ (y)dx = ϕζ (x − y)dx→ εy(dx)= δ(x − y)dx
and

ϕxζ (y)dy = ϕζ (x − y)dy→ εx(dy)= δ(x − y)dy.
Recall

a+(ϕ)=
∫
ϕ(x)a+(dx), a(ϕ)=

∫
dx ϕ(x)ax.

These were the operators defined above. We have

a+
(
ϕxζ
)
dx→ a+(dx), a

(
ϕxζ
)→ ax

since

(
a+
(
ϕxζ
)
dxf
)
(x0, x1, . . . , xn)

= (ϕζ (x − x0)f (x1, . . . , xn)+ · · · + ϕζ (x − xn)f (x0, x1, . . . , xn−1)
)
dx

→ εx0(dx)f (x1, . . . , xn)+ · · · + εxn(dx)f (x0, x1, . . . , xn−1),

and

(
a
(
ϕxζ
)
f
)
(x1, . . . , xn)=

∫
dx0ϕ

x
ζ (x0)f (x0, x1, . . . , xn)→ f (x, x1, . . . , xn).

In this context the operators a+(ϕxζ ) and a(ϕxζ ) are called coloured noise opera-
tors, and the transition ζ ↓ 0 is called, for historical reasons, the singular coupling
limit.

Without introducing any heavy apparatus we can treat four examples, where we
restrict ourselves to the zero-particle case and to the one-particle case, i.e. just to the
vacuum |∅〉 and L(1)= L1(R, k), and do not need the whole Fock space.
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1. A two-level atom coupled to a heat bath of oscillators, or equivalently the
damped oscillator

We restrict to the one-excitation case: We have either all oscillators in the
ground state and the atom in the upper level, or one oscillator is in the first state
and the atom is in the lower state. In the rotating wave approximation the Hamil-
tonian can be reduced to

H =
∫
ωa+(dω)a(ω)+E10a

+(ϕ)+E01a(ϕ),

where

E01 =
(

0 0
1 0

)
, E10 =

(
0 1
0 0

)
, E11 =

(
1 0
0 0

)

and ϕ is a continuous function≥ 0, with compact support in R, and
∫

dtϕ(t)= 1.
We consider a+(ϕ) and a+(ϕ) as coloured noise operators, replace ϕ by ϕζ ,
calculate the resolvent and perform the singular coupling limit. This means, in
frequency space, that ϕ approaches 1 and not δ. Then the resolvent converges to
the resolvent of a one-parameter strongly continuous unitary group on the space

H=
(
C

(
1

0

)
⊗C|∅〉

)
⊕
(
C

(
0

1

)
⊗L(1)

)
.

The one-parameter group can be calculated explicitly, then we obtain the Hamil-
tonian as a singular operator, and calculate the spectral decomposition of the
Hamiltonian explicitly.

After establishing a more general theory on the entire Fock space we recog-
nize the interaction representation V (t) of the time-development operator in the
formal time representation as the restriction of Ut0 to H, where Uts is the solution
of the quantum stochastic differential equation (QSDE)

dtU
t
s =−i

√
2πE01a

+(dt)U ts − i
√

2πE10U
t
s a(t)dt − πE11dt

with Uss = 1; so Uts is an operator on

L2(
R,C2)⊃H.

2. A two-level atom interacting with polarized radiation
This is very similar to the first example, but we have to consider not only the

frequency but also the direction and the polarization of the photons. So for the
photons we are concerned with the space

X = L2(
R× S

2 × {1,2,3}),
where the first factor stands for the formal time (replacing the frequency via
Fourier transform), the second one for the direction and the third one for the
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polarization. We have added a fictional longitudinal polarization in order to make
the calculations easier. We provide X with the measure

〈λ|f 〉 =
∫∫

dtω2
0dn

∑

i=1,2,3

f (t,n, i),

where dn is the surface element on the unit sphere such that
∫

S2
dn= 4π

and ω0 is the transition frequency. Define

X= {∅} +X+X2 + · · ·
and consider

Γ = L2(
X,C2).

Denote by Π(n) the projector on the plane perpendicular to n,

Π(n)ij = δij − ninj .

After some approximations we obtain the Hamiltonian

H =
∫

dnω2
0ω
∑

i,l

Π(n)i,la+(dω,n, i)a(ω,n, l)

+
∫

dnω2
0ϕ(ω)

∑

i,l

Π(k)i,l
(
E10qia(ω,n, l)dω+E01qia

+(dω,n, l)
)

where (q1, q2, q3) is a vector proportional to the dipole moment. We perform
the singular coupling limit via the resolvent, and arrive at a strongly continuous
unitary one-parameter group on

H=
(
C

(
1

0

)
⊗C|∅〉

)
⊕
(
C

(
0

1

)
⊗L2(X,λ)

)
.

We calculate the time evolution explicitly, calculate the Hamiltonian as a singular
operator and give its spectral decomposition. If V (t) is the interaction represen-
tation of the time evolution in a formal time representation, then V (t) turns out to
be the restriction of Uts to H. Here Uts is the solution of the differential equation

dtU
t
s =−i

√
2π
∫

S2

∑

il

Π(n)il
(
E01qia

+(d(t,n), l
)
Uts

+E10U
t
s qia(t,n, l)ω

2
0dndt

)− πγE11U
t
sdt
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with

γ = 8π

3
|q|2.

This is a new type of QSDE and should be investigated further.
3. The Heisenberg equation of the amplified oscillator

In the coloured noise approximation the Hamiltonian reads

H =
∫
ωa+(dω)a(ω)+

∫
b+a+(ϕ)+

∫
ba(ϕ)

where b and b+ are the usual oscillator operators with the non-vanishing com-
mutator [b, b+] = 1. Whereas the evolution corresponding to H is difficult and
will be treated in Chap. 9, the Heisenberg evolution is very easy. Define

H=Cb+ ⊕ {a(ψ) :ψ ∈ L2(R)
}
,

then H stays invariant under the mapping

A �→ eiHtAe−iHt .

Hence we obtain a one-parameter group on the space H. We perform the weak
coupling limit via the resolvent and obtain, similarly to the first example, that
evolution forms a strongly continuous one-parameter group on H. We identify
H with the H of Example 1 and define Eij accordingly. Then the interaction
representation V (t) of the evolution is the restriction to H of the solution Uts to
the QSDE

dtU
t
s = i

√
2πa+(dt)E01U

t
s − i

√
2πE10U

t
s a(t)dt + πE11U

t
sdt.

We calculate the evolution on H explicitly, determine the Hamiltonian and its
spectral decomposition. Whereas this example looks algebraically very similar
to the first one, it is analytically very different. The evolution is not unitary, but
it does leave invariant the hermitian form

(c, f ) �→ |c|2 − ‖f ‖2.

The spectrum of the Hamiltonian consists of the real line and the points ±iπ .
4. The pure number process

We consider the coloured noise Hamiltonian

H =
∫
ωa+(dω)a(ω)+ a+(ϕ)a(ϕ).

The one-particle space L(1)= L2(R) stays invariant. We calculate on this sub-
space the resolvent, and determine the weak coupling limit. We again compute
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the unitary one-parameter group, the Hamiltonian and its spectral decomposition.
The interaction representation is the restriction of the solution of the QSDE

dtU
t
s =

−i2π

1+ iπ
a+(dt)U ts a(t).

After using coloured noise we establish a white noise theory. Then we attack the
general Hudson-Parthasarathy differential equation, i.e., the QSDE

dUts =A1a
+(dt)U ts +A0a

+(dt)U ts a(t)+A−1U
t
s a(t)dt +Bdt

with Uss = 1. The solution can be given as an infinite power series in normal or-
dered monomials. The coefficients Ai,B are in B(k) for some Hilbert space k. If the
coefficients satisfy some well-known conditions, the evolution is unitary. We give
an explicit formula for the Hamiltonian. In Chap. 10 we show how this differential
equation can be approximated by coloured noise.

In order to treat the amplified oscillator we investigate the QSDE

dtU
t
s =−ia+(dt)b+Uts − ibUts a(t)dt −

1

2
bb+.

This is an example of a QSDE with unbounded coefficients. For this we need the
white noise theory, and establish an infinite power series in normal ordered polyno-
mials. Using an algebraic theorem due to Wick, we sum the series and obtain an a
priori estimate. We prove unitarity, strong continuity and the Heisenberg evolution
of Example 3. With the help of the Heisenberg evolution we get estimates which
allow the calculation of the Hamiltonian.

I would like to express my sincere thanks to my good friend and colleague,
Patrick D.F. Ion. He spent weeks reading and discussing the present work with me,
finding a number of mathematical errors and providing good advice. Last but not
least, he improved my clumsy English as well as the LaTeX layout of the mathe-
matical formulae. This book could never have been completed without the untiring
help of Hartmut Krafft, a fellow citizen of our village, rescuing me on all computer
and LaTeX issues. I owe a great deal to the continuous moral support of my dear
friend Sigrun Stumpf.
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8.8.2 Definition of â, â+ and ∂̂ . . . . . . . . . . . . . . . . . 163
8.8.3 Characterization of the Hamiltonian . . . . . . . . . . . . 169

9 The Amplified Oscillator . . . . . . . . . . . . . . . . . . . . . . . . 179
9.1 The Quantum Stochastic Differential Equation . . . . . . . . . . 179
9.2 Closed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.3 The Unitary Evolution . . . . . . . . . . . . . . . . . . . . . . . 192
9.4 Heisenberg Equation . . . . . . . . . . . . . . . . . . . . . . . . 196
9.5 The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 203



Contents xvii

9.6 Amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
9.7 The Classical Yule-Markov Process . . . . . . . . . . . . . . . . 208

10 Approximation by Coloured Noise . . . . . . . . . . . . . . . . . . 213
10.1 Definition of the Singular Coupling Limit . . . . . . . . . . . . . 213
10.2 Approximation of the Hudson-Parthasarathy Equation . . . . . . 215

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227



Chapter 1
Weyl Algebras

Abstract We define creation and annihilation operators as generators of an associa-
tive algebra with the commutation relations as defining relations. This is a special
case of a Weyl algebra. We discuss Weyl algebras, show that ordered monomials
form a basis, introduce multisets and their notation. The vacuum and the scalar
product are defined in a natural way. We prove an algebraic theorem due to Wick.

1.1 Definition of a Weyl Algebra

By an algebra we understand, if not stated otherwise, a complex associative alge-
bra with unit element denoted by 1. We will define the quantum mechanical mo-
mentum and position operators in an algebraic way following the ideas of Hermann
Weyl [45]. They are elements of a special Weyl algebra. Weyl algebras are defined as
quotients of a free algebra. The complex free algebra with indeterminatesXi, i ∈ I ,
is the associative algebra of all noncommutative polynomials in the Xi . So, for in-
stance, X1X2 �=X2X1. The algebra is denoted by F=C〈Xi, i ∈ I 〉. A basis for it is
the collection of monomials or words W formed out of Xi, i ∈ I

W =Xik · · ·Xi2Xi1 .

Assume given a skew-symmetric matrix H = (Hij )i,j∈I , and divide the algebra
C〈Xi, i ∈ I 〉 by the ideal generated by the elements

XiXj −XjXi −Hij , i, j ∈ I.

The resulting algebra is generated by the canonical images xi, i ∈ I , and has the
relations

xixj − xjxi =Hij .
It is called the Weyl algebra generated by the xi with the defining relations xixj −
xjxi =Hij .

The canonical commutation relations provide the best known example: the quan-
tities pi and qi , with i = 1, . . . , n, generate a Weyl algebra with the defining rela-
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tions

piqj − qjpi =−iδij ,

pipj − pjpi = qiqj − qjqi = 0.

1.2 The Algebraic Tensor Product

We introduce the tensor product in a coordinate-free way, following Bourbaki [12].
Assume we have n vector spaces V1, . . . , Vn, and consider the space C of formal
linear combinations of the n-tuples

(x1, . . . , xn) ∈ V1 × · · · × Vn.
Then define the subspace D ⊂ C generated by

(x1, . . . , xi−1, xi + yi, xi+1, . . . , xn)

− (x1, . . . , xi−1, xi, xi+1, . . . , xn)− (x1, . . . , xi−1, yi, xi+1, . . . , xn),

(x1, . . . , xi−1, cxi, xi+1, . . . , xn)− c(x1, . . . , xi−1, xi, xi+1, . . . , xn)

for i = 1, . . . , n; xi, yi ∈ Vi; c ∈C.
The tensor product is the quotient C/D,

C/D = V1 ⊗ · · · ⊗ Vn =
n⊗

i=1

Vi.

The canonical image of (x1, . . . , xn) is written

x1 ⊗ · · · ⊗ xn.

Definition 1.2.1 A mapping

F : V1 × · · · × Vn→U,

where U is a vector space, is called multilinear, if

F(x1, . . . , xi−1, xi + yi, xi+1, . . . , xn)

= F(x1, . . . , xi−1, xi, xi+1, . . . , xn)+ F(x1, . . . , xi−1, yi, xi+1, . . . , xn),

F (x1, . . . , xi−1, cxi, xi+1, . . . , xn)= cF (x1, . . . , xi−1, xi, xi+1, . . . , xn)

for i = 1, . . . , n; xi, yi , in Vi; c ∈C.

A direct consequence of the definition of the tensor product is the following
proposition.
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Proposition 1.2.1 One has

• The mapping

(x1, . . . , xn) ∈ V1 × · · · × Vn �→ x1 ⊗ · · · ⊗ xn ∈ V1 ⊗ · · · ⊗ Vn
is multilinear.

• If

F : V1 × · · · × Vn→U

is a multilinear mapping into a complex vector spaceU , then there exists a unique
linear mapping

F̃ : V1 ⊗ · · · ⊗ Vn→U

such that

F̃ (x1 ⊗ · · · ⊗ xn)= F(x1, . . . , xn).

For completeness we prove the following proposition.

Proposition 1.2.2 Assume that Bi ⊂ Vi is a basis for each Vi, i = 1, . . . , n. Then
the set

{b1 ⊗ · · · ⊗ bn : bi ∈ Bi}
forms a basis of V1 ⊗ · · · ⊗ Vn.

Proof It is clear, that the b1⊗· · ·⊗ bn, bi ∈ Bi , generate V1⊗· · ·⊗Vn. We have to
show that they are independent. Recall the space C of formal linear combinations of
the (x1, . . . , xn), and consider the subspace U spanned by the (b1, . . . , bn), bi ∈ Bi .
If xi ∈ Vi , then

xi =
∑

b∈Bi
xi(b)b

where xi(b) is the component of xi along b ∈ B . Recall that only finitely many xi(b)
are not equal to 0. The mapping

F : V1 × · · · × Vn→U

(x1, . . . , xn) �→
∑

k1,...,kn

x1(b1,k1) · · ·xn(bn,kn)(b1,k1 , . . . , bn,kn)

with bi,ki ∈ Bi , is multilinear. Hence there exists a unique linear mapping

F̃ : V1 ⊗ · · · ⊗ Vn→U

with

F̃ (x1 ⊗ · · · ⊗ xn)= F(x1, . . . , xn).
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In particular,

F̃ (b1,k1 ⊗ · · · ⊗ bn,kn)= (b1,k1 , . . . , bn,kn).

As the elements on the right-hand side are independent, the tensor products

(b1,k1 ⊗ · · · ⊗ bn,kn)
have to be independent too. �

If A is an algebra, the multiplication mapping

m : f ⊗ g ∈A⊗A �→ fg ∈A

is bilinear, and hence well defined.
Assume we have n algebras, and define a product in their tensor product in the

following way:

(f1 ⊗ · · · ⊗ fn)⊗ (g1 ⊗ · · · ⊗ gn) ∈ (A1 ⊗ · · · ⊗An)⊗ (A1 ⊗ · · · ⊗An)

�→ (f1 ⊗ g1)⊗ · · · ⊗ (fn ⊗ gn) ∈ (A1 ⊗A1)⊗ · · · ⊗ (An ⊗An)

�→m1(f1 ⊗ g1)⊗ · · · ⊗mn(fn ⊗ gn) ∈A1 ⊗ · · · ⊗An.

So finally

(f1 ⊗ · · · ⊗ fn)(g1 ⊗ · · · ⊗ gn)= f1g1 ⊗ · · · ⊗ fngn.
We imbed Ai into

⊗
i Ai by putting

u1 :A1 � f1 �→ u1(f1)= f1 ⊗ 1⊗ · · · ⊗ 1 ∈
⊗

i

Ai

...

un :An � fn �→ un(fn)= 1⊗ · · · ⊗ 1⊗ fn ∈
⊗

i

Ai .

The images ui(fi) commute for different i. Conversely we have the following
proposition [12].

Proposition 1.2.3 If A is an algebra and Ai are subalgebras, commuting for dif-
ferent i, then A is isomorphic to

⊗
i Ai . We write

A∼=
⊗

i

Ai .

Proposition 1.2.4 If W is the Weyl algebra generated by x1, . . . , xn, with defining
relations [xi, xj ] = Hi,j (where [xi, xj ] denotes the commutator as usual), and H
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is the direct sum of a p× p submatrix H1 and (n− p)× (n− p) submatrix H2, so

H =
(
H1 0
0 H2

)
,

then

W∼=W1 ⊗W2,

where W1 is the Weyl algebra generated by x1, . . . , xp with the defining relations
[xi, xj ] = (H1)ij , and W2 is the Weyl algebra generated by xp+1, . . . , xn with the
defining relations [xi, xj ] = (H2)ij .

For the proof consider that groups of generators x1, . . . , xp and xp+1, . . . , xn
commute, hence the algebras generated by them commute, and we apply the Propo-
sition 1.2.3.

1.3 Wick’s Theorem

We cite a well-known theorem in quantum field theory from Jauch-Rohrlich’s
book [27].

Assume given two linearly ordered sets A and B , a ring A, and a function f :
A×B→A. Define

C
(
α,β;α′, β ′)= [f (α,β), f (α′, β ′)](1{α > α′}− 1

{
β > β ′

})
,

where [ , ] denotes the commutator as usual, and 1{α > α′} has the value 1 when
α > α′ and 0 otherwise. Consider a finite family (αi, βi)i∈I , αi ∈ A, βi ∈ B and
fi = f (αi, βi). Assume, e.g., I = [1, n], then the sequence

(fin, . . . , fi1)

is called A -ordered if αin ≥ · · · ≥ αi1 , and the sequence

(fjn, . . . , fj1)

is called B-ordered if βjn ≥ · · · ≥ βj1 . Assume

• [[fi, fj ], fk] = 0
• [fi, fj ] = 0 if αi = αj or βi = βj .

Then the A-product

A(f1 . . . fn)=OAf1 · · ·fn := fin · · ·fi1
is independent of the choice of the order of the sequence f1, . . . , fn. So the ele-
ments fi can supposed to commute on the right side of OA and the A-product is
commutative. A similar assertion holds for the B-product.
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Denote by P(n) the set of partitions of [1, n] into singletons and pairs. So p ∈
P(n) is of the form

p= {{t1}, . . . , {tl}, {r1, s1}, . . . , {rm, sm}
}
.

Define

B(p)= B(p;f1, . . . , fn)= B(ft1 · · ·ftl )Cr1,s1 · · ·Crm,sm
with

Crs = C(αr,βr ;αs,βs)= Csr .
Then we have

Theorem 1.3.1

OAf1 · · ·fn =
∑

p∈P(n)
B(p;f1, . . . , fn).

We start with a lemma.

Lemma 1.3.1 Assume given n elements in A indexed by αi,βi ,

gi = g(αi, βi) ∈A, i ∈ [1, n]
and assume βn ≥ · · · ≥ β1, and that there is an element h= h(α,β) ∈ A such that
α ≥ αi, i ∈ [1, n] and furthermore [[h,gi], gj ] = 0, and if α = αi then [h,gi] = 0.
We have

hB(g1 · · ·gn)= B(hg1 · · ·gn)+
n∑

i=1

C(α,β;αi,βi)B
( ∏

j∈[1,n]\{i}
gj

)
. (∗)

Proof Assume β ≤ βi, i = n, . . . , k and β > βi, i = k− 1, . . . ,1. Then

hB(g1 · · ·gn)= hgn · · ·g1 = gn · · ·gkhgk−1 · · ·g1 + [h,gn · · ·gk]gk−1 · · ·g1

= gn · · ·gkhgk−1 · · ·g1 +
n∑

i=k
[h,gi]gn · · ·gi+1gi−1 · · ·gkgk−1 · · ·g1.

As

[h,gi]1{α = αi} = 0

we have for i ∈ [k,n]
[h,gi] = [h,gi]1{β ≤ βi} = [h,gi]

(
1{α > αi} − 1{β > βi}

)= C(α,β;αi,βi).
For i ∈ [1, k− 1], one has anyway

C(α,β;αi,βi)= 0. �



1.3 Wick’s Theorem 7

With the lemma in hand, we finish the proof of the theorem.

Proof We prove the theorem by induction from n− 1 to n. For n= 1 the theorem is
clear. Assume it for n− 1. Define a mapping ϕ :P(n)→P(n− 1) by erasing the
letter n. Assume again

p= {{t1}, . . . , {tl}, {r1, s1}, . . . , {rm, sm}
}
.

Then

ϕp=
{
{{t2}, . . . , {tl}, {r1, s1}, . . . , {rm, sm}} for t1 = n,
{{s1}, {t1}, . . . , {tl}, {r2, s2}, . . . , {rm, sm}} for r1 = n.

Assume now, with different l and m such that l + 2m= n− 1,

q ∈P(n− 1)= {{t1}, . . . , {tl}, {r1, s1}, . . . , {rm, sm}
}
.

Then

ϕ−1(q)= {p0,p1, . . . ,pl
}

is a set of l + 1 partitions of [1, n] with

p
i =
{
{{n}, {t1}, . . . , {tl}, {r1, s1}, . . . , {rm, sm}} for i = 0,

{{t1}, . . . , {ti−1}, {ti+1}, . . . , {tl}, {n, ti}, {r1, s1}, . . . , {rm, sm}} for i > 0.

Without loss of generality, we may assume that the fi are A-ordered. We have by
our hypothesis of induction

A(fn · · ·f1)= fnA(fn−1 · · ·f1)= fn
∑

q∈P(n−1)

B(q;f1, . . . , fn−1).

Now

fnB(q)= fnB(ft1 · · ·ftl )Cr1,s1 · · ·Crm,sl

=
(

B(fn,ft1, . . . , ftl )+
l∑

i=1

B(ft1 · · ·fti−1fti+1 · · ·ftil )C(n, ti)
)

×Cr1,s1 · · ·Crm,sl
=

∑

p∈ϕ−1(q)

B(p;f1 · · ·fn)
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using our lemma (∗). Finally

A(fn · · ·f1)=
∑

q∈P(n−1)

fnB(q;f1, . . . , fn−1)

=
∑

q∈P(n−1)

∑

p∈ϕ−1(q)

B(p;f1 · · ·fn)=
∑

p∈P(n)
B(p;f1, . . . , fn).

�

Now consider a Weyl algebra W generated by the elements xi, i ∈ I , with the
defining relations [xi, xj ] =Hi,j . Assume given a linearly ordered set Γ and a map-
ping γ : I → Γ with the property that Hi,j = 0 for γ (i) = γ (j). Then a mono-
mial W = xin · · ·xi1 can be Γ -ordered. Denote the Γ -ordering by OΓ (W). We use
Wick’s theorem in order to calculate OΓ (W). The A-ordering of our formulation
of Wick’s theorem is the natural ordering of factors in W , the B-ordering is the
Γ -ordering. Then

Cr,s = [xir , xis ]
(
1{r > s} − 1

{
γ (ir ) > γ (is)

})
.

Define, for p ∈P(n) with

p= {{t1}, . . . , {tl}, {r1, s1}, . . . , {rm, sm}
}
,

the expression

�W�p =OΓ (ft1 · · ·ftl )Cr1,s1 · · ·Crm,sm.

Theorem 1.3.2

OΓ (W)=
∑

p∈P(n)
�W�p.

Proof This is a corollary of the last theorem in the notation just discussed. �

1.4 Basis of a Weyl Algebra

Assume the index set I to be totally ordered. We want to show, that the ordered
monomials make up a basis for the Weyl algebra W generated by xi, i ∈ I , with the
defining relations [xi, xj ] =Hi,j . By the last theorem, it is clear that they generate
the Weyl algebra. We have to prove their independence. This problem is related to
the Poincaré-Birkhoff-Witt Theorem and we shall borrow some ideas from Bour-
baki’s proof of that [13].

We begin with the special case of H = 0. The Weyl algebra is then the algebra
K = C[xi, i ∈ I ] of commutative polynomials, with complex coefficients, in the
indeterminates xi, i ∈ I .



1.4 Basis of a Weyl Algebra 9

We shall use the following notation: if A : [1, k]→ I is a mapping, then

xA = xA(k) · · ·xA(1),

so A may be called the ordering map for the monomial XA.

Proposition 1.4.1 The ordered monomials form a basis of K=C[xi, i ∈ I ].

Proof If W is a monomial in the free algebra F = C〈Xi, i ∈ I 〉 with W = XA =
XA(k) · · ·XA(1) and σ ∈Sk , the symmetric group on k elements, then define

σW =XA(σ−1(k)) · · ·XA(σ−1(1)) =XA◦σ−1

and

sW = 1

k!
∑

σ∈Sk

σW ;

thus a mapping s : F→ F is defined.
The algebra K is defined as the quotient F/I, where I is the ideal generated by

the XjXi −XiXj . An element of I is a linear combination of elements of the form

W(XjXi −XiXj )W ′ =XA(k) · · ·XA(l+1)(XjXi −XiXj )XA(l−2) · · ·XA(1)
= (1− τ)XA(k) · · ·XA(l+1)XjXiXA(l−2) · · ·XA(1),

where τ = (l− 1, l) denotes the operator interchanging the indeterminates in places
l − 1 and l. As sτ = s we have

s
(
W(XjXi −XiXj )W ′)= 0

and s vanishes on I.
We want to prove, that

∑
cixAi = 0 implies ci = 0 for finite sums, if the Ai are

different ordering maps Ai : [1, k]→ I . This means

∑
ciXAi ∈ I

and
∑
cis(XAi )= 0.

As the words for different Ai on the left-hand side are different, the ci must van-
ish. �

Theorem 1.4.1 If W is a Weyl algebra generated by x1, . . . , xn, with defining re-
lations xixj − xjxi =Hi,j , then the ordered monomials form a basis of W.
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Proof We define the commutative polynomial algebra K=C[z1, . . . , zn] with inde-
terminates z1, . . . , zn and denote by L(K) the algebra of linear maps K→ K. Set

mi ∈ L(K) :mi(f )= zif ; di(f )=
∑

i<l

Hi,l
∂f

∂zl
.

Then

[mi + di,mj + dj ] = [di,mj ] − [dj ,mi] =Hi,j1i<j −Hj,i1j<i =Hi,j
since Hi,j =−Hj,i and Hi,i = 0. Here

1i<j =
{

1 for i < j,

0 for i ≮ j.

We use this kind of notation often. Define a homomorphism η : F→ L(K) by
η(Xi) = mi + di . This means that in any polynomial we have to replace Xi by
mi + di . If XA =XA(k) · · ·XA(1), with A(k)≥ · · · ≥A(1), is an ordered monomial,
then

η(XA)(1)= (mA(k) + dA(k)) · · · (mA(1) + dA(1))(1)
= (mA(k) · · ·mA(1))(1)= zA(k) · · · zA(1) = zA.

The algebra W= F/I, where I is the ideal generated by [Xi,Xj ]−Hi,j . It is clear,
that η vanishes on I. Assume XAi to be ordered monomials, with ordering maps Ai
as above, and

∑
cixAi = 0 in W, so

∑
ciXAi ∈ I in F. Then

0= η
(∑

ciXAi

)
(1)=

∑
cizAi ,

hence ci = 0, as the ordered monomials form a basis in K. �

1.5 Gaussian Functionals

If Q is a complex n × n-matrix, we define the linear functional γQ : F =
C〈X1, . . . ,Xn〉 → C in the following way. If k = 2m is even, we define the set
P of partitions of [1, k] into pairs; we will always write the pairs with the first
component greater than the second:

P � p= {p1, . . . ,pm}, pi = (ri , si), ri > si .
Put γQ(1)= 1, and A : [1, k]→ [1, n] with k = 2m, and define

�XA�p =
m∏

i=1

Q
(
A(pi )

)
, with
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Q
(
A(pi )

)=Q(A(ri),A(si)
)

for pi = (ri , si), ri > si .
Then, for A : [1, k]→ [1, n], we define the Gaussian functional

γQ(XA)=
{

0 for k = 2m+ 1,
∑

p∈P�XA�p for k = 2m.

Proposition 1.5.1 The functional γQ vanishes on the ideal generated by the poly-
nomials

XiXj −XjXi − (Qi,j −Qj,i).

Proof Consider a monomial, and a specific l ∈ [1, k],
W =XA =XA(k) · · ·XA(l+1)XA(l)XA(l−1)XA(l−2) · · ·XA(1)

and divide the set P, for the given l, into the subsets

M0 =
{
p ∈P : (l, l − 1) ∈ p

}
, Mrs =

{
p ∈P : p′r ,p′′s ∈ p

}
,

where p′r = (r, l) resp. p′r = (l, r), if r > l or r < l, and p′′s = (s, l − 1) resp. p′′s =
(l − 1, s). Then when we define

W0 =XA(k) · · ·XA(l+1)XA(l−2) · · ·XA(1)
we have

γQ(W)=Q
(
A(l),A(l − 1)

)
γQ(W0)

+
∑

r,s /∈{l,l−1},r �=s
Q
(
p
′
r

)
Q
(
p
′′
s

) ∑

p∈Mrs

∏

q∈p\{p′r ,p′′s }
Q(q).

Now consider

W ′ =XA′ =XA(k) · · ·XA(l+1)XA(l−1)XA(l)XA(l−2) · · ·XA(1).
Then p′r and p′′s exchange roles, and we obtain

γQ(W)− γQ
(
W ′)= (Q(A(l),A(l − 1)

)−Q(A(l − 1),A(l)
)
γQ(W0).

From there one obtains the result immediately. �

Corollary 1.5.1 Consider the Weyl algebra W with defining relations

[xi, xj ] =Qi,j −Qj,i
and let κ : F→W be the canonical homomorphism; then there exists a well defined
mapping γ̃Q :W→C with γQ = γ̃Q ◦ κ .
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Example Consider a Weyl algebra W with defining relations [xi, xj ] = Hi,j , and
define a linear mapping by taking the coefficient of the unit in the basis of ordered
monomials, cf. Theorem 1.4.1, then by Theorem 1.3.2, under this mapping

xA �→
∑

p∈P
Q(p)

with

Qi,j =Hi,j1i<j .

1.6 Multisets

Let us recall some basic notions. If X is a set, a list of n elements of X is typically
written, with xi ∈X, i = 1,2, . . . , n, as an n-tuple

(x1, . . . , xn).

It can be defined as a mapping from the interval [1, n] = (1,2, . . . , n) of the natural
numbers into X. We may write

(x1, . . . , xn)= x[1,n].
More generally, if A= (a1, . . . , an) is an ordered set, and x is seen as a map from
A to some target space,

xA = (xa1 , . . . , xan).

The ordinary set defined by xA is the set

{xa : a ∈A}.
We shall use the notion of multisets. A multiset based on a set X is a mapping

m :X→N= {0,1,2,3, . . .}.
The cardinality of m is �m= |m| =∑x∈Xm(x), showing different notations for the
same cardinality. The set of multisets is NX , the set of all mappingsX→N. It forms
an additive monoid. A multiset is finite if its cardinality is finite. The commutative,
ordered monoid of all finite multisets is denoted M(X), and its ordered monoid
structure comes from defining

(m1 +m2)(x)=m1(x)+m2(x)

and

m1 ≤m2 ⇐⇒m1(x)≤m2(x) for all x ∈X.
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We denote by 1x the multiset m(y)= δx,y , and obtain

m=
∑

x∈X
m(x)1x.

We associate to a sequence x = (x1, . . . , xn) the multiset

x• = (x1, . . . , xn)
• = κx =

n∑

i=1

1xi .

So κ is the map that associates to a sequence its multiset. If x = x[1,n] = (x1, . . . , xn)

is a sequence and σ is a permutation, then

σx = (xσ−1(1), . . . , xσ−1(n)).

If x and x′ are two sequences, then there exists a permutation σ with x′ = σx if and
only if κx = κx′.

If m = (x1, . . . , xn)
•, then m(y) is the number of times that y occurs in the se-

quence (x1, . . . , xn), so m(y) is also known as the multiplicity of y in x•. Hence the
number of sequences defining the same multiset is

#
(
κ−1(m)

)= |m|!
m!

with

m! =
∏

x∈X
m(x)!.

We denote by X the set of all finite sequences of elements of X

X= {∅} +X+X2 + · · · .
We use the plus sign to denote the union of disjoint sets. A function f : X→ C is
called symmetric if for x ∈ Xn we have f (σx) = f (x) for all permutations σ . If
f is a symmetric function and Mn(X) is the set of multisets of cardinality n, then
there exists a unique function f̃ :Mn(X)→C such that f = f̃ ◦ κ .

Assume that X is finite and that f vanishes on Xn for sufficiently big n; then we
have the formula

∑

x∈X

1

(#x)!f (x)=
∑

m∈M(X)

1

m! f̃ (m).

If

α = {a1, . . . , an},
is a set without a prescribed ordering, we define Xα as the set of all mappings
xα : α→X. Supplement α with an ordering ω so that then the pair (α,ω) is given,
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e.g., by the sequence

(α,ω)= (a1, . . . , an).

If ω′ is another ordering, then

(
α,ω′

)= (a′1, . . . , a′n
)
,

where (a′1, . . . , a′n) is a permutation of (a1, . . . , an). The mapping xα is represented
in the order ω by the sequence

(xa1 , . . . , xan).

The multiset

x•α = (xa1 , . . . , xan)
• =
∑

i

1xai

is independent of the ordering of α and hence is well defined. If f : Xα→ C is a
symmetric function, then f (xα) = f ((xa1 , . . . , xan)) is well defined, regardless of
the ordering of α. If β ⊂ α, and xα is given, then we use the notation for restriction
xβ = xα � β and xα\β = xα � (α \ β). If xα ∈Xα and xβ ∈Xβ are given, and α and
β are disjoint, then there exists a unique xα+β ∈Xα+β , such that xα and xβ are the
restrictions of xα+β , and we have

x•α+β = x•α + x•β.
If x•α = (xa1 , . . . , xan)

• and xβ = (xb1 , . . . , xbm)
•, then

x•α+β = (xa1 , . . . , xan, xb1, . . . , xbm)
•,

regardless of the orderings chosen in α,β , and α + β .
If X is finite and f :Xn→C is symmetric, and also α has n elements then

∑

x∈Xn
f (x)=

∑

xα∈Xα
f (xα)=

∑

(xa1 ,...,xan )

f (xa1 , . . . , xan)=
∑

m ∈Mn

n!
m! f̃ (m).

Assume f : X→ C is a symmetric function, such that f vanishes on Xn for n
sufficiently large, and there is a sequence α = (α0, α1, α2, . . .) of finite sets with
#αn = n. Then

∞∑

n=0

1

n!
∑

x∈Xn
f (x)=

∞∑

n=0

1

n!
∑

xαn∈Xαn
f (xαn)=

∑

m∈M(X)

1

m! f̃ (m).

We write for short
∞∑

n=0

1

n!
∑

x∈Xn
f (x)=

∑

α

f (xα)Δα
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with

Δα = 1

#α! .
Assume, for example,

α0 = ∅,
α1 = {1},
α2 = {1,2},
α3 = {1,2,3},
· · ·

and

xα0 = ∅,
xα1 = x1,

xα2 = (x1, x2),

xα3 = (x1, x2, x3),

· · · .

Then

∑

α

f (xα)Δα = f (∅)+
∑

x1

f (x1)+ 1

2!
∑

x1,x2

f (x1, x2)

+ 1

3!
∑

x1,x2,x3

f (x1, x2, x3)+ · · · .

If C[X] is a free commutative polynomial algebra generated by the elements
x ∈X, we set

xα = xa1 · · ·xan,
so that

xαxβ = xα+β.
If ∂x0 = d/(dx0), then

∂x0xα =
∑

c∈α
δ(x0, xc)xα\c,

where δ is Kronecker’s symbol and α \ c stands for α \ {c}.
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1.7 Finite Sets of Creation and Annihilation Operators

Assume X to be a finite set and consider the Weyl algebra W(X) generated by
ax, a

+
x for all x ∈X, with the defining relations

[
ax, a

+
y

]= δx,y, [ax, ay] =
[
a+x , a+y

]= 0

for x, y ∈X. This implies, that the ax commute with each other and so do the a+x .
Using Proposition 1.2.4 we obtain

W(X)=
⊗

x∈X
W
(
ax, a

+
x

)
,

where W(ax, a+x ) is the subalgebra generated by ax, a+x . The elements ax are called
annihilation operators, the elements a+x creation operators.

In W(X) we define the anti-isomorphism given by

ax �→ aT
x , a+x �→

(
a+x
)T = ax.

Consider a monomial

M = aϑnxn · · ·aϑ1
x1

with ϑi =±1 and

aϑx =
{
a+x for ϑ =+1,

ax for ϑ =−1.

Then

MT = a−ϑ1
x1

· · ·a−ϑnxn
.

A monomial is called normal ordered, if the creators precede the annihilators,
i.e., if the monomial is of the form

a+xm · · ·a+x1
ayn · · ·ay1 .

Proposition 1.7.1 The normal ordered monomials form a basis of W(X).

Proof In order to apply Theorem 1.4.1, we order the generators of W(X). We as-
sume that X has N elements, order the elements of X and define ξi = a+xi and
ξN+i = axi for i = 1, . . . ,N . �

Consider a monomial

M = aϑ(n)x(n) · · ·aϑ(1)x(1) .
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As the ax commute and the a+x commute among themselves, normal ordering is
defined, see Sect. 1.3, and

:M: =OaM =
∏

i:ϑ(i)=+1

a+x(i)
∏

i:ϑ(i)=−1

ax(i).

Denote by P(n) the set of partitions of [1, n] into singletons {ti} and pairs
{rj , sj }, rj > sj . So we have a typical partition

p= {{t1}, . . . , {tl}, {r1, s1}, . . . , {rm, sm}
}
.

A direct consequence of Wick’s theorem, Theorem 1.3.2, is

Proposition 1.7.2 (Wick’s theorem) Define

�M�p = :aϑ(t1)x(t1)
· · ·aϑ(tl )xt(l)

:C(r1, s1) · · ·C(rm, sm)
with

C(r, s)=
{

1 for x(r)= x(s),ϑ(r)=−1, ϑ(s)=+1,

0 otherwise.

Then

M =
∑

p∈P
�M�p.

If m ∈M(X) is a multiset, m=m11x1 + · · · +mk1xk , then

(
a+
)m = (a+x1

)m1 · · · (a+xk
)mk , am = (ax1)

m1 · · · (axk )mk .
The general form of a normally ordered monomial is

(
a+
)m1 am2 ,

with m1,m2 ∈M(X).
We want to define the ‘right vacuum’ Φ . It is characterized by the property that

axΦ = 0 for all x ∈ X. We define the left ideal Il ⊂W(X) generated by the ele-
ments ax, x ∈X. A normal ordered monomial is in Il if it is of the form (a+)m am′

with m′ �= 0. These elements form a basis of Il . The quotient space W(X)/Il has
the basis (a+)m+Il , where m runs through all multisets in M(X). Denote the zero
element 0+ Il of W(X)/Il by 0, and call

Φ = 1+ Il ,

then

axΦ = Il = 0.
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This is a natural algebraic definition of Φ . We have
(
a+
)m + Il =

(
a+
)m
Φ.

The quotient space W(X)/Il is a W(X) left module. The action of W(X) on
W(X)/Il is denoted by Tl .

f ∈W(X) �→ Tl(f ) :W(X)/Il→W(X)/Il ,

Tl(f )(g + Il)= fg + Il .

As Tl(fg)= Tl(f )Tl(g), the mapping Tl is a homomorphism.
Use Dirac’s notation (a+)mΦ = |m〉, then Φ = |0〉 and

a+x |m〉 = |m+ 1x〉, ax |m〉 =
∑

y∈X
δx,y |m− 1x〉.

If l ∈M(X), then

al|m〉 = m!
(m− l)! |m− l〉,

recalling m! =∏x∈Xm(x)!. So al|m〉 �= 0 iff m≥ l. Especially

am|m〉 =m!Φ.
In an analogous way we define the left vacuum Ψ . Consider the right ideal Ir

generated by the a+x , x ∈X. The elements of the form (a+)m am′ with m �= 0 form
a basis of Ir . The quotient space W(X)/Ir has the basis am + Ir , where m runs
through all multisets in M(X). The quotient space W(X)/Ir is a W(X) right mod-
ule under the action Tr

f ∈W(X) �→ Tr(f ) :W(X)/Ir→W(X)/Ir ,

Tr (f )(g + Ir )= gf + Ir .

As Tr(fg)= Tr(g)Tr(f ), the mapping Tl is an anti-homorphism. Use the notation
Ψ = 1+ Ir , then

am + Ir = Ψam.
Again use Dirac’s notation Ψam = 〈m| and Ψ = 〈0|. Then

Ψa+x = 〈0|a+x = 0,

〈m|ax = 〈m+ 1x |,
〈m|a+x =

∑

y∈X
δx,y〈m− 1x |,

〈m|(a+)l = m!
(m− l)! 〈m− l|.
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Proposition 1.7.3 The mapping f ∈W(X) �→ Tl(f ) ∈ L(W(X)/Il ), the space of
linear mappings of W(X)/Il into itself, is a faithful homomorphism. Similarly, the
mapping f ∈W(X) �→ Tr(f ) ∈ L(W(X)/Ir ) is a faithful anti-homomorphism.

Proof We have to show, that Tl(f )= 0⇒ f = 0. Assume f =∑ c(m, m′)(a+)m
am

′ �= 0, and choosem′ =max{|m′| : c(m,m′) �= 0}. This number exists, as the sum
is finite. Choose m′0 with |m′0| =m′ and c(m,m′0) �= 0 for some m. If c(m,m′) �= 0,

then |m′| ≤m′ and am
′ |m′0〉 =m′0!δm′,m′0 |0〉 and, furthermore,

0= Tl(f )
∣∣m′0
〉=
∑

m

m
′
0!c
(
m,m′0

)(
a+
)m |0〉 =

∑

m

m
′
0!c
(
m,m′0

)|m〉.

As the |m〉 are linear independent, all c(m,m′0)= 0. This is a contradiction. That Tr
is faithful can be proven in an analogous way. �

We consider the vector space

(W/Il )/Ir = (W/Ir )/Il =W/(Il + Ir ).

It is one-dimensional and has the basis

1+ Il + Ir .

Denote by 〈f 〉 the coefficient of 1 when f is expressed in the basis of normal or-
dered monomials. Then

f + Il + Ir = 〈f 〉 + Il + Ir = ΨfΦ.
We make the identification

〈f 〉 = ΨfΦ = 〈0|f |0〉.
If

M = aϑnxn · · ·aϑ1
x1

is a monomial, then

〈M〉 = 〈0|M|0〉 =
∑

p∈P2

�M�p.

Here P2 is the set of pair partitions of [1, n]; if (r, s), r > s, is such a pair, then

C(r, s)=
{

1 for xr = xs,ϑr =−1, ϑs =+1,

0 otherwise.

So

C(r, s)= 〈aϑrxr aϑsxs
〉
.
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If n is odd, there exists no pair partition, and 〈M〉 = 0. If p= {(r1, s1), . . . (rn/2, sn/2)}
with ri > si is pair partition, then

�M�p =
∏

i

C(ri, si).

Using the anti-isomorphismM �→MT we obtain

〈M〉 = 〈MT〉.

Define the matrix

Q
(
(x,ϑ),

(
x′, ϑ ′

))= 〈aϑx aϑ
′
x′
〉

for x, x′ ∈X and ϑ,ϑ ′ = ±1; then

〈M〉 = γQ(M),
where γQ(M) is the Gaussian functional defined in Sect. 1.5.

We may write Wick’s theorem in the form

M =
∑

I⊂[1,n]
:
∏

i∈I
aϑixi :
〈 ∏

i∈[1,n]\I
aϑixi

〉
.

Using the anti-isomorphismM �→MT, we obtain

ΦT = Ψ,
((
a+
)m
Φ
)T = (|m〉)T = Ψam = 〈m|.

The states |m〉 are orthogonal in the sense that

Ψam
(
a+
)m′
Φ = 〈m|m′〉=m!δm,m′ .

In physics, one classically uses instead of |m〉 the states

η(m)= 1√
m!
(
a+
)m
Φ.

They are orthonormal in that
〈
η(m)|η(m′)〉= δm,m′ .

Define the space K (M(X)) of all functions, m ∈M(X) �→ f (m) ∈ C which
vanish for |m| sufficiently large. Extend the form 〈m|m′〉 to a sesquilinear form on
K (M(X)). Consider the elements of the form

|f 〉 =
∑

m

1

m!f (m)|m〉
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〈f | =
∑

m

1

m!f (m)〈m|;

then

〈f |g〉 =
∑

m

1

m!f (m)g(m).

Recall that X is the set of all finite sequences of elements of X

X= {∅} +X+X2 + · · · .
If ξ = (x1, . . . , xn) ∈Xn, then the multiset ξ• = κξ =∑n

x=1 1xi . We set

aξ = ax1 · · ·axn = aκξ , a+ξ = a+x1
· · ·a+xn = a+κξ ,

|ξ 〉 = |κξ 〉, 〈ξ | = 〈κξ |.
We have

(
a+y
)|x1, . . . , xn〉 = |y, x1, . . . , xn〉
ay |x1, . . . , xn〉 = δy,x1 |x2, . . . , xn〉 + δy,x2 |x1, x3, . . . , xn〉

+ · · · + δy,xn |x1, . . . , xn−1〉.
We denote by Ks(X) the space of all symmetric functions X→ C, which vanish
on Xn for n sufficiently big. If f ∈ Ks(X), then there exists a unique function
f̃ ∈K (M(X)) with f = f̃ ◦ κ . We obtain

|f 〉 = |f̃ 〉 =
∞∑

n=0

1

n!
∑

ξ∈Xn
f (ξ)|ξ 〉,

〈f |g〉 = 〈f̃ |g̃〉 =
∞∑

n=0

1

n!
∑

ξ∈Xn
f (ξ)g(ξ).

Proposition 1.7.4 For x ∈X define the mappings ax, a+x :Ks(X)→Ks(X) by

(axf )(x1, . . . , xn)= f (x, x1, . . . , xn)
(
a+x f

)
(x1, . . . , xn)= δx,x1f (x2, . . . , xn)+ δx,x2f (x1, x3, . . . , xn)

+ · · · + δx,xnf (x1, . . . , xn−1).

Then

ax |f 〉 =
∞∑

n=0

1

n!
∑

ξ∈Xn
f (ξ)ax |ξ 〉 = |axf 〉,
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a+x |f 〉 =
∞∑

n=0

1

n!
∑

ξ∈Xn
f (ξ)a+|ξ 〉 = ∣∣a+x f

〉
.

Proof We have

ax |f 〉 =
∑

n

1

n!
∑

x1,...,xn

f (x1, . . . , xn)ax |x1, . . . , xn〉

=
∑

n

1

n!
∑

x1,...,xn

f (x1, . . . , xn)
(
δx,x1 |x2, . . . , xn〉 + · · · + δx,xn |x1, . . . , xn−1〉

)

=
∑

n

n

n!
∑

x2,...,xn

f (x, x2, . . . , xn)|x2, . . . , xn〉 = |axf 〉.

For ax there is a similar calculation. �

We use the notation of Sect. 1.5. If α is a finite set and xα ∈Xα , then

axα =
∏

c∈α
axc ; a+xα =

∏

c∈α
a+xc ; |xα〉 = a+xαΦ.

For c /∈ α we have

a+xc |xα〉 = |xα+c〉,
where we have used the shorthand α + c= α+ {c}. We obtain for xc ∈X

axc |xα〉 =
∑

b∈α
δxb,xc |xα\b〉

upon writing α \ b for α \ {b}. If α = (α0, α1, α2, . . .) is a sequence of sets with
#αn = n, then, recalling Δα = 1/(#α)!, we have

|f 〉 =
∑

α

(Δα)f (xα)|xα〉,

〈f |g〉 =
∑

α

(Δα)f (xα)g(xα).

One obtains for an additional index c

(axcf )(xα)= f (xα+c)

and for xc ∈X
(
a+xcf

)
(xα)=

∑

b∈α
δxc,xbf (xα\c).
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If g :X→C is a function, then define

a(g)=
∑

x∈X
g(x)ax; a+(g)=

∑

x∈X
g(x)a+x .

We obtain for f ∈Ks(X)

(
a(g)f

)
(xα)=

∑

xc∈X
g(xc)f (xα+c),

(
a+(g)f

)
(xα)=

∑

c∈α
g(xc)f (xα\c).

One has also for the commutator
[
a(g), a+(h)

]= 〈g|h〉.



Chapter 2
Continuous Sets of Creation and Annihilation
Operators

Abstract We define first the operators a(ϕ) and a+(ϕ) on the usual Fock space.
Then we exhibit a generalization of the sum-integral lemma to measures. We intro-
duce creation and annihilation operators on locally compact spaces, and use these
notions to define creation and annihilation operators localized at points.

2.1 Creation and Annihilation Operators on Fock Space

There are many ways to generalize function spaces on finite sets to function spaces
on infinite sets. The usual way to generalize creation and annihilation operators
employs Hilbert and Fock spaces. Assume we have a measurable space X and a
measure λ on X. We consider the Hilbert space L2(X,λ) and a sequence of Hilbert
spaces, for n= 1,2, . . . ,

L(n)= L2
s

(
Xn,λ⊗n

)

of symmetric square-integrable functions on Xn, with L(0) = C. The Fock space
for X is defined as

Γ (X,λ)=
∞⊕

n=0

L(n).

It is provided with the scalar product

〈f |g〉λ = f 0g0 +
∞∑

n=1

1

n!
∫
λ(dx1) · · ·λ(dxn)f n(x1, . . . , xn)gn(x1, . . . , xn)

and the norm

‖f ‖2
Γ = |f0|2 +

∞∑

n=1

1

n!
∫
λ(dx1) · · ·λ(dxn)

∣∣fn(x1, . . . , xn)
∣∣2

for f = f0⊕f1⊕f2⊕· · · with fn ∈ L(n), and g accordingly. So f is in Γ , if only
and if ‖f ‖Γ <∞. We define the subspace Γfin ⊂ Γ of those f such that fn = 0 for
n sufficiently large.
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Recall the definition of

X= {∅} +X+X2 + · · ·
and provide X with the measure

ê(λ)(f )= f (∅)+
∞∑

n=1

1

n!
∫
λ(dx1) · · ·λ(dxn)fn(x1, . . . , xn).

We can make the identification

L2
s

(
X, ê(λ)

)= Γ (X,λ).
As the values of a function at a given point are generally not defined, we cannot

define ax and a+x for a given x ∈ X. But the definitions at the end of Sect. 1.7 can
be generalized. Define for f ∈ L(n+ 1) and g ∈ L(1)

(
a(g)f

)
(x1, . . . xn)=

∫
λ(dx0)g(x0)f (x0, x1, . . . , xn)

and for f ∈ L(n− 1)

(
a+(g)f

)
(x1, . . . , xn)=

∑

c∈[1,n]
g(xc)f (x[1,n]\{c}).

One obtains in the usual way
∥∥a(g)

∥∥
Γ
≤√n+ 1‖g‖Γ ‖f ‖Γ ,

∥∥a+(g)
∥∥
Γ
≤√n‖g‖Γ ‖f ‖Γ

with, of course,

‖g‖2
Γ =

∫
λ(dx)

∣∣g(x)
∣∣2.

The mappings a(g) and a+(g) can be extended to operators Γfin(X,λ)→ Γfin(X,λ),
and one has

〈
f |a(g)h〉= 〈a+(g)f |h〉

and the commutator

[
a(f ), a+(g)

]=
∫
λ(dx)f (x)g(x).

2.2 The Sum-Integral Lemma for Measures

In this work we will mainly use another way of generalizing the creation and anni-
hilation operators on finite sets. Instead of L2(X,λ) we will deal with the pairs of
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spaces of measures and spaces of continuous functions on X. Contrary to the situ-
ation described in the last section, we can easily define white noise operators. We
have at our disposal the powerful tools of classical measure theory, and may use the
positivity of the commutation relations.

This paper is related to the theory of kernels, first used in quantum probability
by Maassen [31] and Meyer [34]. The theory of kernels, however, is well known in
quantum field theory. Quantum stochastic processes form, to some extent, a quan-
tum field theory in one space coordinate and one time coordinate. Our approach is
dual to that of Maassen and Meyer. We introduce the field operators directly and
work with them.

The sum-integral lemma is the basic tool of our analysis. It has been well known
for diffuse measures for a long time, i.e., for measures where the points have mea-
sure 0 [33]. Our lemma is much more general; it holds for all measures.

We shall employ Bourbaki’s measure theory. It is a theory of measures on locally
compact spaces. If S is a locally compact space, denote by K (S) the space of
complex-valued continuous functions on S with compact support, and by M (S)

the space of complex measures on S. A complex measure is a linear functional
μ :K (S)→ C, such that for any compact K ⊂ S, there exists a constant CK such
that |μ(f )| ≤ CK maxx∈S |f (x)| for all f ∈K (S) with support in K . As in other
measure theories the set of integrable functions can be extended from functions in
K (S) to much more general functions. All the usual theorems, like the theorem of
Lebesgue, are valid. We shall use the vague convergence of measures, which is the
weak convergence over K (S), i.e. μι→ μ if μι(f )→ μ(f ) for all f ∈K (S).

In order to avoid unnecessary complications, we shall only consider locally com-
pact spaces which are countable at infinity, i.e., which are a union of countably many
compact subsets. Assume now that X is a locally compact space, provide Xn with
the product topology, and the set

X= {∅} +X+X2 + · · ·
with that topology where theXn are both open and closed, and where the restrictions
to Xn coincide with the natural topology of Xn. Then X is locally compact as well,
any compact set is contained in a finite union of the Xn, and its intersections with
the Xn are compact.

In our case, the space X mostly will be R. But we shall encounter R× S
2 and

generalizations of R.
If μ is a complex measure on X, we write

μ= μ0 +μ1 +μ2 + · · ·
where μn is the restriction of μ to Xn. We denote by Ψ the measure given by

Ψ (f )= f (∅).
Then μ0 is a multiple of Ψ . If A= (A(1), . . . ,A(n)) is a totally ordered set, we use
the notation

μ(dxA)= μn(dxA(1), . . . ,dxA(n)).
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A function f on X is called symmetric, if f (w) = f (σw) for all permutations
of w. If α is a set without prescribed order and f is symmetric, then f (xα) is well
defined. A measure on Xn is symmetric, if for all f ∈K (Xn) and all permutations
σ of [1, n], one has μ(f )= μ(σf ) with (σf )(w)= f (σw) for all w ∈Xn. A mea-
sure on X is symmetric if all its restrictions to Xn are symmetric. We then use the
notation μ(dxα).

Like a function, a measure μ has an absolute value |μ|. A measure μ is bounded,
if the measure of the total space with respect to |μ| is finite.

If w ∈X,w = (x1, . . . , xn), then we set

Δw = 1

#w! =
1

n! .

Theorem 2.2.1 (Sum-integral lemma for measures) Let there be given a measure

μ(dw1, . . . ,dwk)

on

X
k =

∑

n1,...,nk

Xn1 × · · ·Xnk ,

symmetric in each of the variables wi . Then

μ=
∑

n1,...,nk

μn1,...,nk

where μn1,...,nk is the restriction of μ to Xn1 × · · · ×Xnk . Assume that

Δw1 · · ·Δwk μ(dw1, . . . ,dwk)=
∑ 1

n1! · · ·nk! μn1,...,nk (dw1, . . . ,dwk)

is a bounded measure on Xk . Then
∫
· · ·
∫

Xk
Δw1 · · ·Δwk μ(dw1, . . . ,dwk)=

∫

X

Δwν(dw)

where ν is a measure on X, and
∑
(1/n!)νn is a bounded measure, in which νn is

the restriction of ν to Xn and

νn(dx1, . . . ,dxn)=
∑

β1+···+βk=[1,n]
μ#β1,...,#βk (dxβ1, . . . ,dxβk ),

where β1, . . . , βk are disjoint sets.

Proof
∫
· · ·
∫

Xk
Δw1 · · ·Δwk μ(dw1, . . . ,dwk)

=
∑

n1,...,nk

∫

Xn1
· · ·
∫

Xnk

1

n1! · · ·nk! μn1,...,nk (dxα1 , . . . ,dxαn)
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where the αi are the intervals

α1 = [1, n1],
α2 = [n1 + 1, n1 + n2], . . . , αk = [n1 + · · ·nk−1 + 1, n1 + · · · + nk].

Fix n1, . . . , nk and put n= n1+ · · ·nk . Then for the summand in the above formula
we have

∫

Xn1
· · ·
∫

Xnk
μn1,...,nk (dxα1 , . . . ,dxαk )

= 1

n!
∑

σ

∫

Xn1
· · ·
∫

Xnk
μn1,...,nk (dxσ(α1), . . . ,dxσ(αk))

where the sum runs over all permutations of n elements. The subsets σ(αi) = βi
have the property

β1 + · · · + βk = [1, n], #βi = ni. (∗)

Fix β1, . . . , βk with property (∗). There are exactly n1! · · ·nk! permutations σ such
that

σ(αi)= βi for i = 1, . . . , k.

Hence the last integral expression equals

n1! · · ·nk!
n!

∑

β1,...,βk

∫
· · ·
∫
μn1,...,nk (dxβ1, . . . ,dxβk ),

for the βi with (∗). Hence

∑

n1,...,nk

∫

Xn1
· · ·
∫

Xnk

1

n1! · · ·nk!μn1,...,nk (dxα1 , . . . ,dxαn)

=
∑

n

1

n!
∑

β1,...,βk

∫
· · ·
∫
μn1,...,nk (dxβ1 , . . . ,dxβk ).

�

Remark 2.2.1 The proof is purely combinatorial. So analogous assertions hold in
similar situations.

We want to use the notation of Sect. 1.7. If α = {a1, . . . , an} is a set without a
prescribed order and μ is a symmetric measure then

μ(dxα)= μ(dxa1, . . . ,dxan)

is well defined. We have
∫

Xn
μ(dw)Δw =

∫

Xα
μ(dxα)Δα = 1

n!
∫

Xα
μ(dxα).
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For a sequence α = (α0, α1, . . .), with #αn = n, of sets without prescribed ordering
we define for a symmetric measure μ on X

∫

X

Δwμ(dw)=
∑

n

1

n!
∫

Xαn
μ(dxαn)

and write it, for short, as
∫

X

Δwμ(dw)=
∫

Xα
μ(dxα)Δα =

∫

α

μ(dxα)Δα.

With this notation we want to reformulate the sum-integral lemma.

Theorem 2.2.2 (Variant of sum-integral lemma) Let αi = (αi,0, αi,1, . . .) be se-
quences of finite sets, with #αi,n = n and αn,i ∩ αn′,j = ∅ for i �= j , and β =
(β0, β1, . . .), with #βn = n and the βj disjoint from the αi , then define

μ(dxα1, . . . ,dxαk )= μ#α1,...,#αk (dxα1, . . . ,dxαk ).

We have
∫

α1

· · ·
∫

αk

Δα1 · · ·Δαkμ(dxα1, . . . ,dxαk )=
∫

β

Δβν(dxβ)

with

ν(dxβ) =
∑

β1+···+βk=β
μ(dxβ1, . . . ,dxβk ),

μ(dxβ1, . . . ,dxβk ) = μ#β1,...,#βk (dxβ1, . . . ,dxβk ).

Remark 2.2.2 We introduced the notation
∫

X

Δwμ(dw)=
∫

α

Δ(α)μ(dxα).

Later we will often skip the Δα completely and write for the last expression simply
∫

α

μ(dxα)

and skipping the dx as well only
∫

α

μ(α).

With this simplified notation the sum-integral lemma reads
∫

α1

· · ·
∫

αk

μ(dxα1, . . . ,dxαk )=
∫

α

∑

α1+···+αn=α
μ(dxα1, . . . ,dxαk )
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or by neglecting the dx

∫

α1

· · ·
∫

αk

μ(α1, . . . , αk)=
∫

α

∑

α1+···+αk=α
μ(α1, . . . , αk).

If X =R and

R= {∅} +R+R
2 + · · ·

and if λ is the Lebesgue measure

∫

α

e(λ)(dxα)f (xα)Δα =
∑

n

∫

x1<···<xn
dx1 · · ·dxn f (x1, . . . , xn).

In the theory of Maassen kernels [34] one defines

∫
dωf (ω)=

∑

n

∫

x1<···<xn
dx1 · · ·dxn f (x1, . . . , xn),

where ω runs through all finite subsets of R. The mapping

(ω1, . . . ,ωn) �→ ω1 + · · · +ωn
is defined where the ωi are pairwise disjoint, i.e. Lebesgue almost everywhere. The
usual sum-integral lemma is

∫
· · ·
∫

dω1 · · ·dωk f (ω1, . . . ,ωk)=
∫

dω
∑

ω1+···+ωk=ω
f (ω).

It can be easily derived from the sum-integral lemma for measures, as multisets with
multiple points have Lebesgue measure 0.

2.3 Creation and Annihilation Operators on Locally Compact
Spaces

We use the duality between measures and continuous functions of compact support.
We define creation and annihilation operators for symmetric functions and measures
on X. Assume given a function ϕ ∈K (X), a function f ∈Ks(X), the space of
symmetric continuous functions on X of compact support, a measure ν ∈M (X),
and a measure μ ∈Ms(X), the space of symmetric measures on X. We define

(
a(ν)f

)
(x1, . . . , xn)=

∫
ν(dx0)f (x0, x1, . . . , xn)
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or in another notation, where α+ c= α+ {c} means that the point c is added to the
set α, and similarly using α \ c= α \ {c}, we can continue with

(
a(ν)f

)
(xα) =

∫
ν(dxc)f (xα+c),

(
a+(ϕ)f

)
(xα) =

∑

c∈α
ϕ(xc)f (xα\c),

(
a+(ν)μ

)
(dxα) =

∑

c∈α
ν(dxc)μ(dxα\c),

(
a(ϕ)μ

)
(dxα) =

∫
ϕ(xc)μ(dxα+c).

If Φ is the function defined by

Φ(∅)= 1; Φ(xα)= 0 for α �= ∅
then

a(ν)Φ = 0.

Similarly if Ψ is the measure defined by

Ψ (f )= 〈Ψ |f 〉 = f (∅),
then

a(ϕ)Ψ = 0.

We have therefore

〈Ψ |Φ〉 = 1.

We define the mapping

μ ∈M (X) �→ μ(Φ)

and use the notation for it

μ(Φ)=Φ(μ)= 〈Φ|μ〉.
One obtains

〈
Ψ |a(ν)a+(ϕ)Φ〉=

∫

X

ν(dx)ϕ(x)= 〈ν|ϕ〉
〈
Φ|a(ϕ)a+(ν)Ψ 〉=

∫

X

ν(dx)ϕ(x)= 〈ϕ|ν〉

and the commutation relations

[
a(ν), a+(ϕ)

] =
∫
ν(dx)ϕ(x)= 〈ν|ϕ〉,
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[
a(ϕ), a+(ν)

] =
∫
ν(dx)ϕ(x)= 〈ϕ|ν〉.

We define

〈μ|f 〉 =
∫

X

Δw μ(dw)f (w)=
∫

α

Δα μ(dxα)f (xα),

〈f |μ〉 = 〈μ|f 〉.

Proposition 2.3.1 We have

〈
a+(ν)μ|f 〉= 〈μ|a(ν)f 〉,
〈
a(ϕ)μ|f 〉= 〈μ|a(ϕ)+f 〉

or

∫
Δw

(
a+(ν)μ

)
(dw)f (w) =

∫
Δw μ(dw)

(
a(ν)f

)
(w),

∫
Δw

(
a(ϕ)μ

)
(dw)f (w) =

∫
Δw μ(dw)

(
a+(ϕ)f

)
(w).

Proof We prove only one of the equations by using the sum-integral lemma

∫

β

Δβ
(
a+(ν)μ

)
(dxβ)f (xβ)=

∫

β

Δβ
∑

c∈β
ν(dxc)μ(dxβ\c)f (xβ).

Introduce the sequence consisting of {c} alone, and the sequence α = (α0, α1, . . .),
by putting αn−1 = βn \ c. In this way the integral becomes

∫

α

∫

c

Δα ν(dxc)μ(dxα)f (xα+c)=
〈
μ|a(ν)f 〉. �

We define the exponential measures and functions

e(ϕ) = Φ + ϕ + ϕ⊗2 + · · · = ea+(ϕ)Φ,
e(ν) = Ψ + ν + ν⊗2 + · · · = ea+(ν)Ψ.

So, for α = {a1, . . . , an},

e(ϕ)(xα) = ϕ(xa1) · · ·ϕ(xan),
e(ν)(dxα) = ν(dxa1) · · ·ν(dxan).



34 2 Continuous Sets of Creation and Annihilation Operators

2.4 Introduction of Point Measures

We consider the function

ε : x ∈X �→ εx ∈M (X),

∫
εx(dy)ϕ(y)= ϕ(x).

So εx is the point measure at the point x ∈X.

Lemma 2.4.1 If μ is a measure on Xn, then
∫

x1

εx1(dy)μ(dx1,dx2, . . . ,dxn)= μ(dy, dx2, . . . ,dxn),

where the subscript variable x1 on the integral indicates integration over the range
X of that variable.

Proof If ϕ ∈K (X) then
∫

y

∫

x1

ϕ(y)εx1(dy)μ(dx1, dx2, . . . ,dxn)=
∫

x1

ϕ(x1)μ(dx1,dx2, . . . ,dxn)

=
∫

y

ϕ(y)μ(dy,dx2, . . . ,dxn). �

We can easily define the mapping

a(x)= a(εx) :Ks(X)→Ks(X),

(
a(x)f

)
(x1, . . . , xn)=

∫

x0

εx(dx0)f (x0, x1, . . . , xn)= f (x, x1, . . . , xn).

If μ ∈Ms(X) then

a+(εx)μ(dxα)=
∑

c∈α
εx(dxc)μ(dxα\c).

If ν is a measure on X, then

a(ν)=
∫
ν(dx)a(x).

We will mostly use the symbol a+(dx) for a mapping from Ks(X) into the mea-
sures on X, which we will now introduce and explain.

If S is a locally compact space, μ a measure on S, and f a Borel function, we
define the product fμ by the formula

∫
(f μ)(ds)ϕ(s)=

∫
μ(ds)f (s)ϕ(s)
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for ϕ ∈K (S), and write

(f μ)(ds)= (μf )(ds)= f (s)μ(ds).
Let S and T be locally compact spaces. We consider a function f : S→M (T ),

with target the space of measures on T . It can be considered as a function

f : S ×K (T )→C

and we write it

f = f (s,dt).
We extend the notion of the creation operator to functions f = f (x,dy) : X→

M (X), where using x indicates the variable and the dy reminds us that the value is
a measure, and define for g ∈Ks(X)

(
a+(f )g

)
(xα,dy)=

∑

c∈α
f (xc,dy)g(xα\c).

We apply this notion to the function ε : x �→ εx and write

(
a+(dy)g

)
(xα)=

(
a+
(
ε(dy)

)
g
)
(xα)=

∑

c∈α
εxc (dy)g(xα\c).

We may consider a+(ε) as an operator-valued measure and write

a+(ε)= a+(ε)(dy).
If ϕ ∈K (X), i.e., ϕ has one variable, then

a+(ϕ)f =
∫
a+(dx)ϕ(x).

We obtain the commutation relations

[
a(εx), a(εy)

] = 0,
[
a+(ε)(dx), a+(ε)(dy)

] = 0,
[
a(εx), a

+(ε)(dy)
] = εx(dy).

We extend this notion to any Borel function g : y ∈X �→ gy ∈Ks(X) and write

(
a+(ε)gy

)
(xα,dy)=

∑

c∈α
εxc (dy)gy(xα\c).

In this equation the product of the measure εxc (dy) with the function gy appears.
A special case arises if gy = a(εy)f .
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Proposition 2.4.1
(
a+(ε)a(εy)f

)
(xα,dy)=

∑

c∈α
εxc (dy)f (xα).

Proof

(
a+(ε)a(εy)f

)
(xα,dy)=

∑

c∈α
εxc (dy)

(
a(εy)f

)
(xα\c)

=
∑

c∈α
εxc (dy)f

(
xα\c + {y}

)=
∑

c∈α
εxc (dy)f

(
xα\c + {xc}

)

=
∑

c∈α
εxc (dy)f (xα)

as

ε(x,dy)g(y)= ε(x,dy)g(x). �

So

n(dy)= a+(ε)(dy)a(εy)
is the operator analogous to the number operator a+x ax in the case of finitely many
x considered in Sect. 1.7.

We single out a positive measure λ on X, and introduce in Ks(X) the positive
sesquilinear form considered already in Sect. 1.7,

〈f |g〉λ =
∫

α

Δα e(λ)(dxα)f (xα)g(xα)=
〈
f e(λ)|g〉= 〈f |g e(λ)

〉
,

using the product of a function with the measure

e(λ)= Ψ + λ+ λ⊗2 + · · · .
More generally, if ν is a measure on X, we have

〈
f |a(ν)g〉

λ
= 〈a+(ν)e(λ)f |g〉.

We introduced in Sect. 2.1 the operator a+(ϕ). One obtains now
〈
a+(ϕ)f |g〉

λ
= 〈f |a(ϕλ)g〉

λ
.

So a(ϕλ) corresponds to the operator a(ϕ) introduced in Sect. 2.1.
If μ is a symmetric measure on X, one has

(
a(ε)(dxc)μ

)
(dxα)= μ(dxα+c)

as
(
a(ε)(dy)μ

)
(dxα)=

∫

xc

εxc (dy)μ(dxα+c)= μ(dxα,dy).
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We can calculate
〈
μ|a+(ε(dy))f 〉= 〈a(ε(dy))μ|f 〉.

Proposition 2.4.2 For f,g ∈Ks(X)

〈
f |a+(ε(dy))g〉

λ
= λ(dy)〈a(ε(y))f |g〉

λ
,

∫

y

〈
f |n(dy)g〉

λ
= 〈f |Ng〉λ

where N is the operator on the space of functions on X given by

(Nf )(x1, . . . , xn)= nf (x1, . . . , xn).

Proof

〈
f |a+(ε(dxc)

)
g
〉
λ
= 〈a(ε(dxc)

)
f e(λ)|g〉=

∫ (
e(λ)f

)
(dxα+c)g(xα)Δ(α)

= λ(dxc)
∫
f (xα+c)

(
e(λ)

)
(dxα)g(xα)Δ(α)

= λ(dxc)
〈
a(xc)f |g

〉
λ
.

Hence
〈
f |a+(ε(dy))g〉

λ
= λ(dy)〈a(ε(y))f |g〉

λ
.

One obtains, from the definition of n

〈
f |n(dy)g〉

λ
= 〈f |a+(ε(dy))a(εy)g

〉
λ
= λ(dy)〈a(εy)f |a(εy)g

〉
λ

and
∫

y

λ(dy)
〈
a(εy)f |a(εy)g

〉
λ

=
∞∑

n=0

(1/n!)
∫
λ(dy)

∫
λ(dx1) · · ·λ(dxn)f (y, x1, . . . , xn)g(y, x1, . . . , xn)

= 〈f |Ng〉λ. �

If V is a complex vector space with the scalar product 〈· | ·〉, we may write |f 〉
for f ∈ V , and 〈f | for the semilinear functional g = |g〉 �→ 〈f |g〉. If c ∈ C, then
〈cf | = c〈f |. Given an operator A : V → V , we define the operator A† operating on
〈f | to the left by

〈f |A† = 〈Af |.
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There might be, or there might not be, an operator A+ acting on |g〉 to the right with
A† =A+ or 〈Af |g〉 = 〈f |A†g〉 = 〈f |A+g〉.

We apply this definition to Ks(X) provided with the scalar product 〈· | ·〉λ and, as
a corollary of Proposition 2.4.2, we have

a+
(
ε(dy)

)= a†(εy)λ(dy).

We use Bourbaki’s terminology in denoting by εx the point measure at the point
x ∈ X. We compare it to the δ-function on R, as used in physical literature. The
δ-function has three different meanings, depending on the differentials with which
it is multiplied:

δ(x − y)dy = εx(dy),
δ(x − y)dx = εy(dx),

δ(x − y)dx dy =Λ(dx,dy),
where

∫
Λ(dx,dy)f (x, y)=

∫
dxf (x, x).

Recall

R= {∅} +R+R
2 + · · · ,

use for λ the Lebesgue measure, treat the δ-function formally as an ordinary func-
tion, and put δx(y)= δ(x − y); then

(
a+(δx)f

)
(xα)=

∑

c∈α
δ(x − xc)f (xα\c),

(
a(δxc )f

)
(xα)=

∫
dxb δ(xc − xb)f (xα+b)= f (xα+c).

We have, with this notation, the nice duality relation

〈
f |a+(δx)g

〉
λ
= 〈a(δx)f |g

〉
λ
.

For many calculations it is advantageous to work with the δ-function. In doing so
there is no difference between a+ and a†. But the author hopes that the mathematics
has become clearer through the use of the ε-measures.

In some calculations we use the terminology of Laurent Schwartz and write

ε0(dx)= δ(x)dx.



Chapter 3
One-Parameter Groups

Abstract In the first section, starting from the resolvent equation we study strongly
continuous one-parameter groups, their resolvents and their generators. In the sec-
ond section, we introduce the spectral Schwartz distribution.

3.1 Resolvent and Generator

We follow, for quite a while, the book of Hille and Phillips [24]. Assume we have a
Banach space V . Denote by L(V ) the space of all bounded linear operators from V
to V provided with the usual operator norm. If a ∈ L(V ) the resolvent set of a is

ρ(z)= {z ∈C : (z− a)−1 exists
}
,

where z− a stands for z1− a, as usual. The set ρ(z) is open. The function

R(z) : z ∈ ρ(z) �→ (z− a)−1

is called the resolvent of a. The resolvent satisfies the resolvent equation

R(z1)−R(z2)= (z2 − z1)R(z1)R(z2).

Approaching matters the other way round, assume we have an open set G ⊂ C

and a function R(z) :G→ L(V ) satisfying the resolvent equation. Such a function
is called a pseudoresolvent; the resolvent equation implies that the R(z), z ∈ G,
commute. From

(
1+ (z2 − z1)R(z1)

)
R(z2)=R(z1)

one concludes, that for |z2 − z1| ‖R(z1)‖ < 1 the inverse of (1+ (z2 − z1)R(z1))

exists and

R(z2)=
(
1+ (z2 − z1)R(z1)

)−1
R(z1).

Hence R(z) is holomorphic in G.

Proposition 3.1.1 If R(z) :G→ L(V ) is a pseudoresolvent, then

D =R(z)V
W. von Waldenfels, A Measure Theoretical Approach to Quantum Stochastic Processes,
Lecture Notes in Physics 878, DOI 10.1007/978-3-642-45082-2_3,
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is a subset independent of z ∈G. If R(z0) is injective for one z0 ∈G, then R(z) is
injective for all z ∈G, and there exists a mapping a :D→ V such that

(z− a)R(z)f = f for f ∈ V,
R(z)(z− a)f = f for f ∈D,

or

R(z)= (z− a)−1;
furthermore,

aR(z)=−1+ zR(z) and R(z)a =−1+ zR(z).
The operator a is closed. If V0 ⊂ V is a dense subspace, then a is the closure of its
restriction to R(z)V0, where z is an element of the resolvent set.

Proof If f ∈R(z0)V , then there is a g ∈ V such that

f =R(z0)g =
(
1+ (z− z0)R(z0)

)
R(z)g,

so f ∈ R(z)V . Assume R(z0) to be injective and denote by R(z0)
−1 : D→ V its

inverse. Define a = z0 −R(z0)
−1, then, for f ∈D,

R(z)(z− a)f =R(z)(z− z0 +R(z0)
−1)f

=R(z)(1+ (z− z0)R(z0)
)
R(z0)

−1f

= (R(z)+ (z− z0)R(z)R(z0)
)
R(z0)

−1f = f.
The other equality is proven in the same way.

The graph of a is the subset

G= {(f, af ) : f ∈D}.
We have to show, thatG is closed. Assume we have a sequence (fn, afn) converging
in V × V to (f,h). Then we may take gn so that fn =R(z)gn, and

(z− a)fn = (z− a)R(z)gn = gn→ zf − h= g
defines g, for which fn =R(z)gn→ f =R(z)g. So f ∈D and

af = aR(z)g =−g + zR(z)g =−g+ zf = h.
If (f, af ) ∈ G then f = R(z)g, and there exists a sequence gn ∈ V0, such that

gn→ g. Hence R(z)gn→R(z)g and

aR(z)gn =−gn + zR(z)gn→−g+ zR(z)g = af. �
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Proposition 3.1.2 Assume we have an operator a defined on a subset D of V , and
a function R(z) defined on an open set G⊂ C such that R(z) : V →D, for z ∈G,
and

(z− a)R(z)f = f for f ∈ V,
R(z)(z− a)f = f for f ∈D.

Then R(z) fulfills the resolvent equation.

Proof We have

R(z1)(z1 − z2)R(z2)=R(z1)(z2 − a)R(z1)−R(z1)(z1 − a)R(z2)

=R(z1)−R(z2). �

If the assumptions of the last proposition are fulfilled, we call R(z) the resolvent
of the operator a.

A strongly continuous one-parameter group in L(V ) is a family T (t), t ∈R, of
operators in L(V ) such that

T (0)= 1,

T (s + t)= T (s)T (t) for s, t ∈R,

and for f ∈ V the function

t �→ T (t)f

is norm continuous in V . Furthermore, we assume that there exists a constant r ≥ 0
such that, for t ∈R,

∥∥T (t)
∥∥≤ const er|t |.

From now on, all one-parameter groups T (t) will be assumed to be strongly contin-
uous and to satisfy the bound on growth given just above.

Define, as we now are sure we can,

R(z)=
{
−i
∫∞

0 eiztT (t)dt for Im z > r,

i
∫ 0
−∞ eiztT (t)dt for Im z < r.

Proposition 3.1.3 Consider a family of operators T (t), t ∈R, with T (0)= 1 and
t �→ T (t)f norm continuous for f ∈ V , and ‖T (t)‖ ≤ const ert ; then T (t) is a one-
parameter group if and only if R(z) satisfies the resolvent equation for | Im z|> r .

Proof Assume to begin with that Im z1 > r and Im z2 > r ; then

−(z2 − z1)

∫ ∞

0

∫ ∞

0
eiz1tt+iz2t2

(
T (t1 + t2)− T (t1)T (t2)

)
dt1dt2
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=−(z2 − z1)

∫ ∞

0
dt
∫ t

0
dt1eiz1t1+iz2(t−t1)T (t)− (z2 − z1)R(z1)R(z2)

=R(z1)−R(z2)− (z2 − z1)R(z1)R(z2).

If Im z1 > r and Im z2 < r , then

(z2 − z1)

∫ ∞

0

∫ 0

−∞
eiz1tt+iz2t2

(
T (t1 + t2)− T (t1)T (t2)

)
dt1dt2

= (z2 − z1)

∫ ∞

0
dt
∫ ∞

t

dt1eiz1t1+iz2(t−t1)T (t)

+ (z2 − z1)

∫ 0

−∞
dt
∫ t

−∞
dt2eiz1(t−t2)+iz2t2T (t)− (z2 − z1)R(z1)R(z2)

=R(z1)−R(z2)− (z2 − z1)R(z1)R(z2).

The proposition follows from the uniqueness of Laplace transform. �

We call R(z) the resolvent of the one-parameter group T (t), t ∈R.
We have, for y > r ,

iy R(iy)= y
∫ ∞

0
dt e−ytT (t)=

∫
dt Y (t)e−ytT (t),

with Y(t)= 1t>0. Using the convergence for y ↑∞
yY (t)e−yt→ δ(t)

one obtains the lemma:

Lemma 3.1.1 If R(z) is the resolvent of a one-parameter group, then for y ↑ ∞
and f ∈ V

iy R(iy)f → f

in norm.

From there one obtains

Proposition 3.1.4 If R(z) is the resolvent of a one-parameter group, then the set
D =R(z)V is dense in V , and, furthermore, the mappingR(z) : V →D is injective.

Proof That the set D = R(z)V is dense in V follows directly from the preceding
lemma. For the second assertion we have to prove

R(z)f = 0⇒ f = 0.
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But R(z)f −R(iy)f = (z− iy)R(iy)R(z)f = 0, so R(iy)f = 0 and

f = lim
y↑∞ iy R(iy)f = 0. �

The generator S of the group T (t) has the domain

DS =
{
f ∈ V : lim

t→0

T (t)− 1

t
f exists

}

and, for f ∈DS ,

Sf = lim
t→0

T (t)− 1

t
f.

Proposition 3.1.5 Define the operator a as in Proposition 3.1.1, and R(z) as in
Proposition 3.1.2. We have DS =R(z)V =D and

S = (−i)
(
1−R(z)−1)=−ia.

Proof Calculate, for Im z > r ,

(1/s)
(
T (s)− 1

)
R(z)= 1/(is)

(∫ ∞

0
eiztT (t + s)dt −

∫ ∞

0
eiztT (t)dt

)

= 1/(is)

(∫ ∞

s

(
e−izs − 1

)
eiztT (t)dt −

∫ s

0
eiztT (t)dt

)
.

For f ∈ V
(1/s)

(
T (s)− 1

)
R(z)f →−izR(z)f + if.

Hence R(z)f ∈DS , and

Sf =−izR(z)f + if =−iaf.

So D ⊂DS . On the other hand, if f ∈DS , then

(1/s)
(
T (s)− 1

)
R(z)f =R(z)(1/s)(T (s)− 1

)
f →−iR(z)f + if =R(z)Sf

and also f ∈R(z)V =D and DS ⊂D. �

Assume now that V is Hilbert space with scalar product (f |g). Denote the adjoint
of a bounded operator K by K∗.

Proposition 3.1.6 With the current definition of R(z), the one-parameter group
T (t) is unitary if and only if

R(z)∗ =R(z).
In this case is ‖T (t)‖ = 1.
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Proof Calculate, for Im z > r ,

R(z)∗ = i
∫ ∞

0
e−iztT (t)∗dt,

R(z)= i
∫ 0

−∞
eiztT (t)dt = i

∫ ∞

0
e−iztT (−t)dt.

By the uniqueness of the Laplace transform, we have

T (t)∗ = T (−t)= T (t)−1

for t > 0. For t < 0 a similar argument holds. �

Definition 3.1.1 If −ia is the generator of a unitary strongly continuous one-
parameter group U(t), we call a the Hamiltonian of the group and denote it by H .

Proposition 3.1.7 Assume given a pseudoresolvent z ∈G �→R(z) with values in a
Hilbert space V ; assume z, z ∈G, Im z �= 0, that R(z)∗ = R(z) and R(z) is injec-
tive, and that D =R(z)V is dense in V . Then

a =H = z−R(z)−1,

H :D =R(z)V → V is selfadjoint,

and (H −λ)−1 exists for Imλ �= 0. The Hamiltonian H :D→ V of a unitary group
is selfadjoint.

Proof We show first that H is symmetric, i.e., that

(f |Hg)= (Hf |g)
for f,g ∈D, or

(
R(z)h|HR(z)k)= (HR(z)h|R(z)k),

for h, k ∈ V . This can be done by a straightforward calculation, as

(
h|R(z)HR(z)k)= (h|(−1+ zR(z))R(z)k)= ((−1+ zR(z))h|k).

We still have to prove that the domain of the adjoint is D. The domain DH ∗ of the
adjointH ∗, which is usually unbounded, is the set of all f ∈ V such that there exists
a g ∈ V with

(Hh|f )= (h|g)
for all h ∈D. So

(
HR(z)k|f )= (R(z)k|g)
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for all k ∈ V , or

((−1+ zR(z))k|f )= (k|(−1+ zR(z))f )= (k|R(z)g).

Therefore

−f + zR(z)f =R(z)g
and f ∈ D, and thus DH ∗ ⊂ D. The symmetry of H , and that D is dense in V ,
implies that DH ∗ ⊃D.

Define

U = 1+ (z− z)R(z).
Then

UU∗ =U∗U = 1,

U is unitary and ‖U‖ = 1. So

(U − ζ )−1

exists for ζ ∈ C, |ζ | �= 1, as the corresponding power series converge. We have for
λ �= z

U − z− λ
z− λ = 1+ (z− z)R(z)−

(
1+ z− z

z− λ
)

= z− z
z− λ

(
(z− λ)R(z)− 1

)= z− z
z− λ(H − λ)R(z)

and
∣∣∣∣
z− λ
z− λ

∣∣∣∣ �= 1⇐⇒ Im λ �= 0.

So (H − λ)R(z) is bijective, and since R(z) is bijective, H − λ is bijective. �

As a corollary of the two last propositions we have

Proposition 3.1.8 If U(t), t ∈ R, is a unitary strongly continuous one-parameter
group, then its generator is S =−iH and the Hamiltonian H is selfadjoint.

We will have to study, in Chaps. 8 and 9, the following situation. Let there be a
unitary groupU(t) and a dense subspace V0 ⊂ V . Assume given a subspaceD0 ⊂ V
and z, z in the resolvent set of the Hamiltonian, and furthermore that R(z)V0 and
R(z)V0 are contained in D0. Let there be a symmetric operator H0: D0 → V , i.e.,
for f,g ∈D0,

(f |H0g)= (H0g|f )
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and assume that, for ξ ∈ V0,

H0R(z)ξ =−ξ + zR(z)ξ,
H0R(z)ξ =−ξ + zR(z)ξ.

Proposition 3.1.9 With the definitions in the previous paragraph, the subspace D0

is dense in V , D0 ⊂D, and

H0 =H �D0,

and H is the closure of H0.

Proof We know already by Propositions 3.1.1 and 3.1.4, thatR(z)V0, and henceD0,
is dense in V , and also that H is the closure of its restriction to R(z)V0. Consider
the matrix elements, for ξ ∈ V0 and f ∈D0,

(
ξ |R(z)H0f

)= (R(z)ξ |H0f
)
.

Now R(z)ξ is in D0, and using the symmetry of H0 the last expression equals

(
H0R(z)ξ |f

)= (−ξ + zR(z)ξ |f )= (ξ |−f + zR(z)f ).

As V0 is dense in V , we obtain

R(z)H0f =−f + zR(z)f.

So

f = zR(z)f −R(z)H0f ∈R(z)V =D
and

(z−H)f = zf −H0f

and

Hf =H0f.
�

3.2 The Spectral Schwartz Distribution

If G⊂C is open, and the function f :G→C, f (z)= f (x + iy) has a continuous
derivative, set

∂f = df

dz
= 1

2

(
∂f

∂x
− i
∂f

∂y

)
, ∂f = df

dz
= 1

2

(
∂f

∂x
+ i
∂f

∂y

)
.
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The function f is holomorphic if and only if ∂f = 0. In an analogous way one
defines these derivatives for Schwartz distributions [37]. The function z �→ 1/z is
locally integrable, and one obtains

∂(1/z)= πδ(z),
where δ(z) is the δ-function in the complex plane. Assume we are given an open set
G⊂C and a function f :G\R→C, which is holomorphic and is the restriction for
z= x+ iy ∈G,y > 0 of a continuous function on z ∈G,y ≥ 0, and for z ∈G,y < 0
it is the restriction of a continuous function on z ∈ G,y ≤ 0. This is equivalent to
the statement, that the limit

lim
ε↓0
f (x ± iε)= f (x ± i0)

exists locally uniformly. Hence f (x ± i0) exists and is continuous. We have

∂f (x + iy)= (i/2)(f (x + i0)− f (x − i0)
)
δ(y). (∗)

In the following we call a test function an infinitely differentiable function with
compact support, and the space of these is usually denoted C∞c , so we say we have
a C∞c -function.

In the symmetrical form of the Dirac notation for spaces in duality, one uses
two verticals in the notation, so that for instance below we write (f |R(z)|g) where
we could have just written as before (f |R(z)g). This emphasizes the duality and
clarifies the calculations we make.

Proposition 3.2.1 Assume given a function R(z) :G→ L(V ), defined and obeying
the resolvent equation almost everywhere, and a subspace V0 ⊂ V such that z �→
(f |R(z)|g) is locally integrable for all f,g ∈ V0; then

z1, z2 �→ (f |R(z1)R(z2)|g)
is also locally integrable, and for the Schwartz derivatives one has the formula

∂1∂2(f |R(z1)R(z2)|g)= πδ(z1 − z2)∂(f |R(z1)|g).

Proof The resolvent equation has as a consequence that z1, z2 �→ (f |R(z1)R(z2)|g)
is locally integrable, as e.g.,

z1, z2 �→ 1

z2 − z1
(f |R(z1)|g)

is locally integrable.
Given two test functions ϕ1, ϕ2, then

∫∫
dz1dz2

(
∂1∂2(f |R(z1)R(z2)|g)

)
ϕ1(z1)ϕ2(z2)
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=
∫∫

dz1dz2
1

z2 − z1
(f |(R(z1)−R(z2)

)|g)∂1ϕ1(z1)∂2ϕ2(z2),

and, looking at the first summand on the right-hand side and integrating by parts
over z2, we have

∫∫
dz1dz2

1

z2 − z1
(f |R(z1)|g)∂1ϕ1(z1)∂2ϕ2(z2)

=−π
∫

dz(f |R(z)|g)∂ϕ1(z)ϕ2(z).

For the second summand we have a similar calculation with a result differing in
overall sign, and we obtain

∫∫
dz1dz2

(
∂1∂2(f |R(z1)R(z2)|g)

)
ϕ1(z1)ϕ2(z2)

=−π
∫

dz(f |R(z)|g)∂(ϕ1(z)ϕ2(z)
)

=
∫∫

dz1dz2πδ(z1 − z2)∂(f |R(z1)|g)ϕ1(z1)ϕ2(z2). �

Definition 3.2.1 Under the assumptions of the last proposition we call

M = (1/π)∂R
defined scalarly for f,g ∈ V0 by

(f |M(z)|g)= (1/π)∂(f |R(z)|g)
the spectral Schwartz distribution of R.

Corollary 3.2.1 As corollary of the last proposition we have
∫∫

dz1dz2(f |M(z1)M(z2)|g)ϕ1(z1)ϕ2(z2)=
∫

dz(f |M(z)|g)ϕ1(z)ϕ2(z).

This can be written

M(z1)M(z2)= δ(z1 − z2)M(z1)

or

M(ϕ1)M(ϕ2)=M(ϕ1ϕ2).

Proposition 3.2.2 Under the assumptions of the last proposition and under the
additional assumption, that R(z) is injective, denote again by a the operator defined
by the resolvent. Then we have

aM(z)= zM(z)
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or more precisely

(f |aM(z)|g)= z(f |M(z)|g).

Proof We have

−
∫

dz(f |aR(z)|g)∂(ϕ(z)=−
∫

dz(f |(−1+ zR(z)|g)∂(ϕ(z)

=
∫

dzzϕ(z)∂(f |R(z)|g)

as

∂z= 0. �

Remark 3.2.1 The spectral distribution seems to be an interesting object. Suppose
we have a matrix A with the resolvent

R(z)= 1

z−A =
∑

i

1

z− λi pi

where pi are the eigenprojectors, so that pipj = piδij . Then

M(z)= (1/π)∂R(z)=
∑

i

δ(z− λi)pi .

We have, for test functions ϕ1, ϕ2,

M(ϕ1)M(ϕ2)=
∫∫

dz1dz2M(z1)M(z2)ϕ(z1)ϕ(z2)=M(ϕ1ϕ2).

The last equation also holds if A is nilpotent, e.g., A2 = 0. Then one has to take

R(z)= 1

z
+AP

1

z2
,

where P denotes the principal value. Then

M(z)= δ(z)−A∂δ(z).

We consider again, as in Proposition 3.1.7, a pseudoresolvent z ∈G �→R(z)with
values in a Hilbert space V , and assume z, z ∈G, Im z �= 0, R(z)∗ =R(z), and R(z)
injective, and that D = R(z)V is dense in V . Then R(z) can be extended to the set
of all z with Im z �= 0.

Proposition 3.2.3 If z �→ (f |R(z)|g), for f,g ∈ V0, is locally integrable, then

(f |μ(x)|g)= lim
ε↓0

1

2π i
(f |(R(x − i0)−R(x + i0)|g)
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exists in the sense of Schwartz distributions. Furthermore

(f |μ(x)|f )
is a measure ≥ 0, and

(f |M(x + iy)|g)= (f |μ(x)|g)δ(y).
If (f |R(x ± 0)|f ) exists locally uniformly and is therefore continuous, then
(f |μ(x)|f ) has continuous density ≥ 0 with respect to Lebesgue measure, and is
given by

(f |μ(x)|f )= 1

2π i
(f |(R(x − i0)−R(x + i0)|f ).

Proof We write z= x+ iy = (x, y) and use both notations. We use the abbreviations
(f |R(z)|f ) = F(z) and (f |M(z)|f ) = G(z). The other matrix elements can be
obtained by polarization. The distribution

G(z)= 1

π
∂F(z)

has as support the real line, the function F(z) is holomorphic in Im z �= 0 and locally
integrable. If ϕ is test function, we define

‖ϕ‖1 = sup
{∣∣ϕ(z)

∣∣+ ∣∣∂xϕ(z)
∣∣+ ∣∣∂yϕ(z)

∣∣}.

As
∫
G(z)ϕ(z)dz=− 1

π

∫
F(z)∂ϕ(z)dz

we have that for any compact subset K of C there exists a constant CK such that
∣∣∣∣

∫
G(z)ϕ(z)dz

∣∣∣∣≤ CK‖ϕ‖1.

Define a test function ρ on R

0≤ ρ(y)≤ 1,

ρ(y)=
{

1 for 0< |y|< 1/2,

0 for |y|> 1.

If ψ is test function, then
∥∥y2ψ(z)ρ(y/ε)

∥∥
1 =O(ε)

for ε ↓ 0. Hence
∫

dzG(z)y2ψ(y)= 0, (i)
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because

y2ψ(z)
(
1− ρ(y/ε))

has its support in C \R, and we have
∣∣∣∣

∫
dzG(z)y2ψ(y)

∣∣∣∣=
∣∣∣∣

∫
dzG(z)y2ψ(y)ρ(y/ε)

∣∣∣∣≤ CK
∥∥y2ψ(z)ρ(y/ε)

∥∥
1 =O(ε),

if ψ has its support in the compact set K .
Choose a test function ϕ and r so large that the support of ϕ is in the strip

{|y|< r}. Then
∫

dzϕ(z)G(z)=
∫

dzϕ(z)ρ(y/r)G(z)

=
∫

dz
(
ϕ(x,0)+ ∂yϕ(x,0)y + y2ψ(z)

)
ρ(y/r)G(z).

Taking into account (i) we obtain

G(z)=G0(x)δ(y)−G1(x)δ
′(y) (ii)

with, for any test function χ(x),
∫

dx G0(x)χ(x)=
∫

dzG(z)χ(x)ρ(y/r),

∫
dx G1(x)χ(x)=

∫
dzG(z)χ(x)yρ(y/r),

where these expressions are independent of r , provided that the support of ϕ is in the
strip {|y|< r}. Equation (ii) is a special case of a theorem due to L. Schwartz [37].

We calculate
∫

dz(f |R(z)|f )∂ϕ(z)=
∫∫

dxdy(f |R(x + iy)|f )(1/2)(∂x + i∂y)ϕ(x, y).

Now

(f |R(x + iy)|f )= (f |R(x + iy)∗|f )= (f |R(x − iy)|f )
and we obtain

∫∫
dxdy(f |R(x − iy)|f )(1/2)(∂x − i∂y)ϕ(x, y)

=
∫∫

dx dy(f |R(x + iy)|f )(1/2)(∂x + i∂y)ϕ(x,−y)

=
∫

dz(f |R(z)|f )∂ϕ̃(z)
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with

ϕ̃(z)= ϕ(z)= ϕ(x,−y).
We continue with the estimate

0≤ (f |
(∫

dz1R(z1)∂ϕ(z1)

)+(∫
dz2R(z2)∂ϕ(z2)

)
|f )

=
∫∫

dz1dz2(f |R(z1)R(z2)|f )∂ϕ̃(z1)∂ϕ(z2)

=−π
∫

dz(f |R(z)|f )∂(ϕ̃(z)ϕ(z)).

Hence
∫

dz(f |M(z)|f )ϕ̃(z)ϕ(z)=
∫

dzG(z)ϕ̃(z)ϕ(z)≥ 0. (iii)

Use Eq. (ii) and obtain

0≤
∫

dxG0(x)
∣∣ϕ(x,0)

∣∣2 +
∫

dxG1(x)
(−∂yϕ(x,0)ϕ(x,0)+ ϕ(x,0)∂yϕ(x,0)

)
.

As ∂y(ϕ(x,0)) can be chosen arbitrarily, we conclude that G1 = 0, and, again using
L. Schwartz [37], that G0 = (f |μ|f ) is a measure ≥ 0.

We have
∫

dx G0(x)χ(x)=
∫

dzG(z)χ(x)ρ(y/r)=− 1

π

∫
dzF (z)∂χ(x)ρ(y/r)

=− 1

π
lim
ε↓0

∫

|y|>ε
dzF (z)∂χ(x)ρ(y/r)

= i

2π
lim
ε↓0

∫
dx
(
F(x + iε)− F(x − iε)

)
χ(x).

This is the equation for μ in the proposition. If F(x ± i0) exists in the usual sense
locally uniformly, then it is continous and we have by Eq. (∗) at the beginning of
the section, that

(f |μ(x)|f )= 1

2π i
(f |(R(x − i0)−R(x + i0)|f ).

Hence (f |μ(x)|f ) is a continuous function ≥ 0 , identified with the measure whose
density it is. �

Proposition 3.2.4 Assume furthermore that μ is a bounded measure. If ϕ ∈ C∞c (C)
is a test function, then

ψ =
∫

dζϕ(ζ )/(z− ζ )
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is a C∞ function vanishing at ∞. We have in the sense of distributions,
∫

dx(f |μ(x)|f )/(z− x)= (f |R(z)|f ).

Proof We have
∫

dx(f |μ(x)|f )ψ(x)=
∫

dζϕ(ζ )
∫

dx
(
f |μ(x)f )/(ζ − x)

and

=
∫
(f |M(ζ)|f )ψ(ζ )dζ =− 1

π

∫
dζ(f |R(ζ )|f )∂ζψ(ζ )

=
∫

dζ(f |R(ζ )|f )ϕ(ζ ). �

Remark 3.2.2 Compare this result with the formula of the spectral theorem

(f |1/(z−H)|f )= (f |R(z)|f )=
∫
(f |dEx |f )1/(z− x)

for f ∈ V . Then for f ∈ V0 one concludes

(f |dEx |f )= (f |μ(x)|f )dx,
where (Ex, x ∈R) is the spectral family of the self-adjoint operator H .

Example Consider the multiplication operator Ω in L2(R), given by (Ωf )(ω) =
ωf (ω). The resolvent

RΩ(z)= (z−Ω)−1

is holomorphic off the real line. The domain of Ω is the space D = RΩ(z)L2, the
space of all L2 functions f such thatΩf is square integrable. Here we have defined
Ωf for all functions in a natural way. The corresponding strongly continuous one-
parameter group is

U(t)= e−iΩt ,
(
U(t)f

)
(ω)= e−iωtf (ω).

The group is clearly unitary, as is confirmed by the equation RΩ(z)∗ =RΩ(z).
For f,g ∈ C1

c

(f |RΩ(x ± i0)|g)=
∫

dωf (ω)g(ω)P/(x −ω)∓ iπf (x)g(x).

So

(f |μ(x)|g)= f (x)g(x).
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The generalized eigenfunctions are

δx(ω)= δ(x −ω).
Using the Dirac formalism of bra and ket vectors we obtain

μ(x)= |δx)(δx |.
We have

RΩ(z)=
∫

dx
1

z− x μ(x)=
∫

dx
1

z− x |δx)(δx |,
and

Ω|δx)= x|δx).
The eigenvectors δx form a generalized orthonormal basis, i.e.,

(δx |δy)= δ(x − y),
∫

dx|δx)(δx | = 1.

The first equation can be checked directly and follows from Proposition 3.2.1. The
second equation says that

∫
dxμ(x)= 1.



Chapter 4
Four Explicitly Calculable One-Excitation
Processes

Abstract We consider in this chapter four examples which can be treated without
much apparatus. Three of them are of physical interest. We do not need the full
Fock space but only its one-particle and zero-particle subspaces. We calculate the
time development explicitly and give the Hamiltonian. We obtain its spectral de-
composition with the help of generalized eigenvectors.using a method, which has
been applied in the study of radiative transfer by Gariy V. Efimov and the author in
J. Spectrosc. Radiat. Transf. 53, 59–74 (1953).

4.1 Krein’s Formula

The formula in the theorem below is an important tool in our discussions. I know it
as Krein’s formula, and we’ll call it that. If M is a quadratic matrix, its resolvent

R(z)= (z−M)−1 = 1

z−M
is a meromorphic matrix-valued function for z ∈C. Its poles are the eigenvalues of
M , its residues at the poles are the projectors onto the eigenspaces, and the Lau-
rent expansions at the poles give the principal eigenvectors often called generalized
eigenvectors. We shall use the term generalized eigenvectors in another sense below.
We allow fractions for non-commutative quantities, if the numerator and denomina-
tor commute.

Theorem 4.1.1 (Krein’s formula) Given a matrix of the form

H =
(

0 L

G K

)
,

where 0,K,G,L are block matrices, then the resolvent can be written

R(z)= 1

z−H =
(

0 0
0 RK

)
+
(

1
RKG

)
C−1(1,LRK)

W. von Waldenfels, A Measure Theoretical Approach to Quantum Stochastic Processes,
Lecture Notes in Physics 878, DOI 10.1007/978-3-642-45082-2_4,
© Springer-Verlag Berlin Heidelberg 2014
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with

RK =RK(z)= 1

z−K
and

C = C(z)= z−LRK(z)G.

Proof We have to check, that

HR(z)=−1+ zR(z).
Now

HR =
(

0 LRK
0 KRK

)
+
(

LRKG

G+KRKG
)
C−1(1,LRK).

Use

KRK =−1+ zRK and LRKGC
−1 =−1+ zC−1

and a short calculation provides the proof. �

For Im z sufficiently large, positive or negative,

R(z)=
{
−i
∫∞

0 dt e−iHt+izt for Im z > 0,

i
∫ 0
−∞ dt e−iHt+izt for Im z < 0.

Set

U(t)= e−iHt , UK(t)= e−iKt

and write for the Heaviside function

Y(t)= 1t>0, Y̌ (t)= Y(−t)= 1t<0.

Define the Laplace transform for a function of t

(L f )(z)=
∫

dt eiz tf (t).

Then

R(z)=
{
−i(LUY)(z) for Im z > 0,

i(LUY̌ )(z) for Im z < 0.

Using the Schwartz distributions δ and δ′ we have

1=L δ, z= iL δ′.
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Define the function Z(t) such that

C−1(z)=
{
−i(LZY)(z) for Im z > 0,

i(LZY̌ )(z) for Im z < 0.

The equation

(z−LRKG)C−1 = 1

becomes, since convolution is mapped into ordinary multiplication by the Laplace
transform, a pair of formulas, one for positive t and one for negative t , namely

(
δ′ +LUKYG

) ∗ZY = δ,

Z′ = −
∫ t

0
dt1LUK(t − t1)GZ(t1), Z(0)= 1, Z(t)= 0 for t < 0

and

(−δ′ +LUKY̌G
) ∗ZY̌ = δ,

Z′ =
∫ 0

t

dt1LUK(t − t1)GZ(t1), Z(0)= 1, Z(t)= 0 for t > 0.

Krein’s formula becomes under the Laplace transform, for t > 0,

UY =
(

0 0
0 UKY

)
+
(

δ

−iUKYG

)
∗ZY ∗ (δ,−iLUKY)

upon canceling one of the factors of −i that occurs throughout, and for t < 0 simi-
larly becomes

UY̌ =
(

0 0
0 UKY̌

)
+
(

δ

iUKY̌G

)
∗ZY̌ ∗ (δ, iLUKY̌ ).

4.2 A Two-Level Atom Coupled to a Heat Bath of Oscillators

4.2.1 Discussion of the Model

The two-level atom in a heat bath of oscillators is equivalent to the harmonic oscil-
lator in a heat bath of oscillators. The heat bath causes transitions from the upper to
the lower level. The oscillator is being damped [40].

In quantum mechanics a harmonic oscillator with frequency ω is described by
two operators a and a+ with the commutation relation [a, a+] = 1. So they generate
a Weyl algebra. Their representation has been described in Sect. 1.7. We have a
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vacuum |0〉 and the vectors |n〉 = (a+)n|0〉, n ≥ 1. They span a pre-Hilbert space
with the elements

f =
∞∑

n=0

(1/n!)fn|n〉

and the scalar product given by

〈
n|n′〉= n! δn,n′

hence

〈f |g〉 =
∞∑

n=0

(1/n!)fngn.

Our notation differs from the one common in quantum mechanics. The vectors |n〉
are usually normalized with the factor (n!)−1/2. The Hamiltonian is

H = ωa+a.
So H |n〉 = ωn|n〉 and exp (−iHt) can be defined so that

e−iHt |n〉 = e−inωt |n〉.
One obtains

eiHtae−iHt = e−iωta, eiHta+e−iHt = eiωta+.

Consider now a finite system of oscillators, with frequencies ωλ, given by the
creation and annihilation operators aλ, a

+
λ , λ ∈Λ. The representation space is a pre-

Hilbert space spanned by the vectors |m〉 = (a+)m|0〉, where m runs through all
multisets of Λ. The Hamiltonian is

H0 =
∑

λ∈Λ
ωλa

+
λ aλ

and

e−iH0t |m〉 = exp

(
−i
∑

λ∈Λ
mλωλt

)
|m〉

for m=∑λ∈Λmλ1λ. We have

eiH0t aλe−iH0t = e−iωλtaλ, eiH0t a+λ e−iH0t = eiωλta+λ .

A non-degenerate two-level atom is described by a two-dimensional Hilbert
space spanned by |+〉 and |−〉. The Hamiltonian is given by

Hatom|+〉 = ω0|+〉, Hatom|−〉 = 0
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or, upon defining |±〉〈±| =E±,±,

Hatom = ω0E++.

We are interested in a two-level atom coupled to a system of oscillators. The total
Hamiltonian is, with coupling constants gλ and hλ,

Htot =H0 +Hatom +Hint

=
∑

λ∈Λ
ωλa

+
λ aλ +ω0E++

+
∑

λ∈Λ

(
gλaλE+− + gλa+λ E−+ + hλaλE−+ + hλa+λ E+−

)
.

We calculate the interaction Hamiltonian in the so-called interaction representation

H ′int(t)= exp
(
i(H0 +Hatom)t

)
Hint exp

(−i(H0 +Hatom)t
)

=
∑

λ∈Λ

(
gλaλE+−ei(−ωλ+ω0)t + gλa+λ E−+e−i(−ωλ+ω0)t

+ hλaλE−+ei(−ωλ−ω0)t + hλa+λ E+−ei(+ωλ+ω0)t
)
.

Assume now |ωλ − ω0| # ω0, then the terms including hλ vary rapidly and can be
neglected. This is the so-called rotating wave approximation. Define ω′λ = ωλ−ω0,
then

Htot = ω0

(∑

λ∈Λ
a+λ aλ +E++

)
+
∑

λ∈Λ
ω′λa

+
λ aλ +

∑

λ∈Λ

(
gλaλE+− + gλa+λ E−+

)
.

The expression
∑
λ∈Λ a

+
λ aλ +E++ is the operator corresponding to the number of

excitations in the system. It commutes with Htot and gives a background contribu-
tion, which is neglected in the dynamics that are being calculated. So we take a
simplified total Hamiltonian

Htot =
∑

λ∈Λ
ω′λa+λ aλ +

∑

λ∈Λ

(
gλaλE+− + gλa+λ E−+

)
.

The interaction Hamiltonian in the interaction representation now becomes

H ′int(t)=
∑

λ∈Λ

(
gλaλe−iω′λtE+− + gλa+λ eiω′λtE−+

)
.

Define

F(t)=
∑

λ∈Λ
gλaλe−iω′λt ;
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we interpret it as coloured quantum noise [23]. It has the commutator

[
F(t),F+

(
t ′
)]=

∑

λ∈Λ
|gλ|2e−iω′λ(t−t ′).

We obtain

H ′int(t)= F(t)E+− + F+(t)E−+.
Assume, that the number of excitations is 1, then we have only to consider the

states

|+〉 ⊗ |0〉, |−〉 ⊗ |1λ〉, for λ ∈Λ,
and we can represent Htot by the matrix H in the space C⊕C

Λ

H =
(

0 〈g|
|g〉 Ω

)
,

where |g〉 is the column vector in C
Λ with the elements gλ and 〈g| is the row vector

with the entries gλ; also Ω is the Λ×Λ-matrix with entries ω′λδλ,λ′ .
If we assume continuous sets of frequencies, and make the rotating wave approx-

imation, we arrive by analogy at

Htot =H0 +Hatom +Hint

= ω0

(∫
a+(dω)a(ω)+E++

)

+
∫
ωa+(dω)a(ω)+

∫
g(ω)a(ω)dωE+− +

∫
ωg(ω)a+(dω)E−+.

The term
∫
a+(dω)a(ω)+E++

is the number of excitations. We assume it to be 1 and disregard it. In the interaction
representation we obtain

H ′int(t)=
∫

dω g(ω)a(ω)e−iωtE+− +
∫
g(ω)a+(dω)eiωtE−+

= F(t)E+− + F+(t)E−+
where

F(t)=
∫

dω g(ω)aλe−iωt

is the quantum coloured noise with the commutator

[
F(t),F+

(
t ′
)]= 〈0|F(t)F+(t ′)|0〉 =

∫
dω
∣∣g(ω)

∣∣2e−iω(t−t ′).



4.2 A Two-Level Atom Coupled to a Heat Bath of Oscillators 61

Under these assumption, we may write Htot in the form of a matrix over C⊕DΩ ,
where Ω is the multiplication operator acting on functions on R, and DΩ is its
domain, so that

Hg =
(

0 〈g|
|g〉 Ω

)
=ΩE−− +E+−〈g| +E−+|g〉

with

|g〉 = (g(ω))
ω∈R ∈ L2(R).

We want to change g in such a way, that
[
F(t),F+

(
t ′
)]= 〈0|F(t)F+(t ′)|0〉 = 2πδ

(
t − t ′);

this means that g approaches 1. This is the so-called singular coupling limit.
There are other physical situations, which yield the same mathematical problem.

Consider a harmonic oscillator with frequency ω0 in a heat bath of oscillators. De-
scribe the oscillators by the creation and annihilation operators b+, b. Then Hamil-
tonian of the damped oscillator in the rotating wave approximation is

Htot =H0 +Hosc +Hint =
∑

λ∈Λ
ωλa

+
λ aλ +ω0b

+b+
∑

λ∈Λ

(
gλaλb

+ + gλa+λ b
)
.

The number of excitations is
∑

λ∈Λ
a+λ aλ + b+b.

It commutes with the Hamiltonian and is set to 1. Then we arrive, as before, at

Htot =
∑

λ∈Λ
ω′λa

+
λ aλ +

∑

λ∈Λ

(
gλaλb

+ + gλa+λ b
)
.

A third possibility is the Heisenberg equation for the damped oscillator. If A is
an operator,

ηt (A)= exp(−iHtot)A exp(+iHtot).

Then

d

dt

(
ηt (b)

ηt (aλ)

)
=
∑

λ′

(
0 〈g|
|g〉 Ω

)

λ,λ′

(
ηt (b)

ηt (aλ′)

)
.

Continue as before.

4.2.2 Singular Coupling Limit

We define the Hilbert space

H=C⊕L2(R)
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with the scalar product

〈
(c, f )|(c′, g)〉= cc′ +

∫
dxf (x)g(x).

As explained in the last subsection, we discuss the operator on C⊕DΩ ⊂ H given
by the matrix

Hg =
(

0 〈g|
|g〉 Ω

)
,

where g ∈ L2 and Ω is the multiplication operator considered already at the end of
Sect. 3.2.

Proposition 4.2.1 The resolvent Rg(z) of Hg is given by

1

z−Hg =Rg(z)=
(

0 0
0 RΩ(z)

)
+
(

1
RΩ(z)|g〉

)
1

Cg(z)

(
1, 〈g|RΩ(z)

)

with

Cg(z)= z− 〈g|RΩ(z)|g〉 = z−
∫ |g(ω)|2

z−ω dω.

The resolvent is defined for Im z �= 0 and we have the equation

Rg(z)
+ =Rg(z).

Proof One checks immediately that R(z) is defined for Im z �= 0, that R(z)+ =
R(z), and that R(z) maps H into the domain C⊕DΩ of Hg . By the same calcula-
tions as the ones we were using for Krein’s formula in the matrix case, we establish
that

(z−Hg)Rg(z)= 1,

Rg(z)(z−Hg)= 1.

By Proposition 3.1.1, we see that Rg(z) is the resolvent of Hg . �

We want to replace g by the constant 1. We denote by E the constant function 1
and by the bra-vector 〈E| the linear functional

f ∈ L1(R) �→ 〈E|f 〉 =
∫

dx f (x) ∈C,

and by the ket-vector |E〉 the semilinear functional

f ∈ L1(R) �→ 〈f |E〉 =
∫

dx f (x)= 〈E|f 〉 ∈C.
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We perform the so-called singular coupling limit. We consider a sequence gn
of square-integrable functions, converging to E pointwise, uniformly bounded by
some constant function, with the property

gn(ω)= gn(−ω).
Then, for fixed z with Im z �= 0, the resolvents Rgn(z) converge in operator norm to

R(z)=
(

0 0
0 RΩ(z)

)
+
(

1
RΩ(z)|E〉

)
1

C(z)

(
1, 〈E|RΩ(z)

〉
.

The function

C(z)= z+ iπσ(z)

with

σ(z)=
{

1 for Im z > 0,

−1 for Im z < 0

is holomorphic in the upper and lower half-planes and continuous at the boundaries.
We extend the operator RΩ(z)= (z−Ω)−1 to all functions on the real line. So for
f ∈ L2

〈f |RΩ(z)|E〉 = 〈E|RΩ(z)|f 〉 =
∫
f (ω)/(z−ω)dω.

The function R(z) is defined for Im z �= 0, and, as a limit of resolvents in operator
norm, the function R(z) fulfills the resolvent equation. Furthermore R(z)+ =R(z),
which could be seen immediately directly.

We want now to discuss existence and the shape of the Hamiltonian of R(z).
We fix a number z ∈ C, Im z �= 0. The domain of the Hamiltonian can be directly
determined by the resolvent with the help of the formula

D =R(z)H.
Hence

D =
{
f =

(
0

RΩ(z)f̃

)
+ c
(

1

RΩE

)
: f̃ ∈ L2, c ∈C

}
.

One concludes at first, that the obvious guess for H is wrong:

H �=
(

0 〈E|
|E〉 Ω

)

as, e.g.,

〈E|RΩE〉 =
∫

dω

z−ω
is not defined.
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We propose a more refined construction. Define the space of functions on R

E= {f : f = f̃ + cE with f̃ ∈ L2(R), c ∈C
}
.

We then define the subspace L⊂ L2

L=RΩ(z)E=
{
f =RΩ(z)(cE + f̃ ) : f̃ ∈ L2}

or more explicitly f ∈ L if and only if, for some c ∈C and f̃ ∈ L2,

f (ω)= 1

z−ω
(
c+ f̃ (ω)).

The space L is independent of the chosen z as

RΩ(z0)(cE + f̃ )=RΩ(z)
(
1+ (z− z0)RΩ(z0)

)
(cE + f̃ )

and f̃ +RΩ(z0)(cE + f̃ ) ∈ L2.
Denote by L∗ the algebraic dual of L, i.e. the set of all linear functionals

L→ C, and by L† the set of all semilinear functionals L→ C. A semilinear
functional ϕ is additive and ϕ(cf ) = cϕ(f ) for f ∈ C. By the scalar product
〈g|f 〉 = ∫ dω g(ω)f (ω) we associate to any f ∈ L2 a semilinear functional ϕ on L,

ϕ(ξ)= 〈ξ |f 〉.
As L is dense in L2, the functional determines f . So we may imbed L2 into L† and

L⊂ L2 ⊂ L
†.

Define the functionals 〈Ê| ∈ L∗, and also |Ê〉 ∈ L†, for f of the form given above,
by

〈Ê|f 〉 = lim
r→∞

∫ r

−r
f (ω)dω=−iπcσ(z)+

∫
1

z−ω f̃ (ω)dω

and

〈f |Ê〉 = 〈Ê|f 〉.
Define the operator

Ω̂ : L→ L
†,

〈g|Ω̂f 〉 = lim
r→∞

∫ r

−r
dω g(ω)ωf (ω),

Ω̂f =−c|Ê〉 − f̃ + zf.
Compare it to the equation holding pointwise

Ωf =−cE − f̃ + zf.
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We have, in particular,

〈Ê|RΩ(z)|E〉 = −iπσ(z),

Ω̂ΩR(z)|E〉 = −|Ê〉 + zR(z)|E〉.

Define the operator

Ĥ :C⊕L→C⊕L
†,

Ĥ =
(

0 〈Ê|
|Ê〉 Ω̂

)
.

Theorem 4.2.1 The operator Ĥ maps ξ ∈C⊕L→ Ĥ ξ ∈C⊕L2 =H if and only
if

ξ ∈D
i.e.

ξ =
(

c

RΩ(z)(cE + f̃ )
)

with c ∈C, f̃ ∈ L2. We have

ĤR(z)f =−f + zR(z)f.

So the Hamiltonian H exists and is the restriction of Ĥ to D.

Proof Assume

ξ =
(
c′

f

)
=
(

c′

RΩ(z)(cE + f̃ )
)
.

We obtain

Ĥ

(
c′
f

)
=
( 〈Ê|f 〉
c′〈Ê| − c〈Ê| − f̃ + zf

)
.

Hence

Ĥ ξ ∈H⇔ ξ ∈D.
Using the same calculations as in the matrix case in Sect. 4.1, namely Krein’s for-
mula, one obtains

ĤR(z)f =−f + zR(z)f.
From there one concludes, that R(z) is injective. By Proposition 3.1.1, it gives rise
to a Hamiltonian H , which is selfadjoint. It is the restriction of Ĥ to D. �
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Remark 4.2.1 By direct calculation one establishes, that Ĥ is symmetric, i.e. that

〈f |Ĥg〉 = 〈g|Ĥf 〉 = 〈Ĥf |g〉
for f,g ∈ L.

4.2.3 Time Evolution

The function R(z) is determined by a function U(t) for t ∈ R whose values are
operators on H:

R(z)=
{
−i(LUY)(z) for Im z > 0,

i(LUY̌ )(z) for Im z < 0.

Hence, for t > 0,

UY =
(

0 0
0 UΩY

)
+
(

δ

−iUΩY |E〉
)
∗ZY ∗ (δ,−i〈E|UΩY

)

and, for t < 0,

UY̌ =
(

0 0
0 UΩY̌

)
+
(

δ

iUΩY̌ |E〉
)
∗ZY̌ ∗ (δ, i〈E|UΩY̌

)

with

Z = e−π |t |.

Writing the convolutions in an explicit way we have, for t > 0,

U(t)=
(
U00 U01
U10 U11

)

with

U00 = e−πt ,

U01 =−i
∫ t

0
dt1e−π(t−t1)〈E|e−iΩt1,

U10 =−i
∫ t

0
dt1e−iΩ(t−t1)|E〉e−πt1,

U11 = e−iΩt −
∫∫

0<t1<t2<t
dt1dt2e−iΩ(t−t2)|E〉e−π(t2−t1)〈E|e−iΩt1 .

Lemma 4.2.1 The operatorU(t) depends continuously on t , and ‖U(t)‖ =O(√t)
for t→∞.
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Proof We prove the lemma for t > 0. The proof for t < 0 is similar. It suffices to
show the assertion for the Uik . It is clear for U00.

U10(t)(ω)=−i
∫ t

0
dt1e−iω(t−t1)e−πt1 =−i

1

iω− π
(
e−πt − e−iωt).

Then
∥∥U10(t)

∥∥2 =
∫

dω
∣∣U10(t)(ω)

∣∣2 ≤
∫

dω
4

π2 +ω2

is bounded. The function U10(t)(ω) is continuous in L2-norm by the theorem of
Lebesgue, as it is a continuous function bounded by a fixed L2-function. We have

〈
U01(t)|f

〉=
∫

dωU10(t)(ω)f (ω)

and one obtains the desired result from that for U10. The continuity and norm bound
are trivial for e−iΩt . For the second term of U11 we have to consider

F(t)(ω)=−
∫∫

0<t1<t2<t
dt1dt2e−iω(t−t2)e−π(t2−t1)

∫
dω1e−iω1t1f (ω1)

=−i
∫ t

0
dt1U10(t − t1)(ω)f̃ (t1)

with

f̃ (t1)=
∫

dω1e−iω1t1f (ω1).

We calculate

∥∥F(t)
∥∥2 =

∫
dω
∣∣F(t)(ω)

∣∣2 ≤
∫

dω
∫ t

0
dt1
∣∣U10(t − t1)(ω)

∣∣2
∫ t

0
dt1
∣∣f̃ (t1)

∣∣2

≤
∫

dω
4t

π2 +ω2

∫ ∞

−∞
dt1
∣∣f̃ (t1)

∣∣2 =
∫

dω
8πt

π2 +ω2
‖f ‖2. �

With the results of Sect. 3.1 we obtain the theorem

Theorem 4.2.2 The U(t) form a one-parameter unitary strongly continuous group
generated by −iH , where H :D→H is defined by Theorem 4.2.1.

Physical Interpretation The term U00(t) is the probability amplitude that the atom
started at t = 0 in the upper state and stayed there until the time t . So the probability
that the atom is at time t in the upper state is e−2πt . Then U10(t)(ω) gives the prob-
ability amplitude that the atom is at time t = 0 in the upper state, and jumps at time
t to the lower state, emitting a photon of frequency ω. The asymptotic frequency
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distribution for t→∞ is

lim
t→∞

∣∣U10(t)(ω)
∣∣2 = 1

π2 +ω2
,

the well-known Lorentz or Cauchy distribution. U01(t)(ω) is the probability ampli-
tude that at time 0 the atom is in the lower state, and a photon of frequency ω is
absorbed between the times 0 and t . The matrix element

(ω′|U11(t)|ω)= e−iωtδ
(
ω′ −ω)−

∫∫

0<t1<t2<t
dt1dt2e−iω′(t−t2)e−π(t2−t1)e−iωt1

corresponds to the case that an incoming photon of frequency ω either passes by
unperturbed, or is absorbed and reemitted with frequency ω′.

4.2.4 Replacing Frequencies by Formal Times

By the use of the Fourier transform we replace frequencies labelled ω by formal
times labelled τ . This is used in quantum stochastic differential equations and makes
them similar to classical stochastic differential equations. In addition, it gives some
insight into the physical situation. Introduce

ψω
(
ω′
)= δ(ω−ω′), ϕτ (ω)= (2π)−1/2eiωτ .

Then

〈ψω|ϕτ 〉 = (2π)−1/2eiωτ , 〈ϕτ |ψω〉 = (2π)−1/2e−iωτ .

Define

Ff (τ)= (2π)−1/2
∫

dω e−iωτf (ω)= (ϕτ |f ).

Calculate

F
(
e−iΩtf

)=Ff (t + τ)= (Θ(t)Ff )(τ ),
where

(
Θ(t)g

)
(τ )= g(t + τ)

is the right shift. So

F e−iΩt =Θ(t)F .
One finds

FE(τ)= (2π)−1/2δ(τ ).
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Define

RΘ(z)=FRΩ(z)F
−1 =

{
−i
∫∞

0 dt eiztΘ(t), for Im z > 0,

i
∫ 0
−∞ dt eiztΘ(t), for Im z < 0.

Then RΘ(z)L2 is the Sobolev space of those functions on R which are L2 and the
Schwartz derivatives of which are L2 as well. For Im z > 0, one has

(
FRΩ(z)E

)
(τ )= (RΘ(z)(2π)−1/2δ

)
(τ )=−i(2π)−1/21{τ < 0}e−izτ .

The space

FL= {RΘ(z)(f + cδ) : f ∈ L2, c ∈C
}

consists of functions which are L2, the derivatives of which are L2 on R \ {0}, and
which have a jump at 0, and where the left and right limits exist. Define

〈δ̂, f 〉 = (1/2)(f (0+)− f (0−)),
∂̂f = ∂cf +

(
f (0+)− f (0−))δ̂

where ∂cf is the restriction of ∂f to R \ {0}. One obtains

F ĤF−1 =
(

0
√

2π〈δ̂|√
2π |δ̂〉 i∂̂

)
.

Recall

U00 = e−πt ,

U01 =−i
∫ t

0
dt1e−π(t−t1)〈E|e−iΩt1,

U10 =−i
∫ t

0
dt1e−iΩ(t−t1)|E〉e−πt1,

U11 = e−iΩt −
∫∫

0<t1<t2<t
dt1dt2e−iΩ(t−t2)|E〉e−π(t2−t1)〈E|e−iΩt1 .

Factorize

U(t)=
(

1 0
0 UΩ(t)

)
V (t).

So V (t) is an interaction representation of U(t). We have

V00(t)= e−πt ,

V01(t)=−i
∫ t

0
dt1e−π(t−t1)〈E|e−Ωt1,
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V10(t)=−i
∫ t

0
dt1eiΩt1 |E〉e−πt1,

V11(t)= 1−
∫∫

0<t1<t2<t
dt1dt2eiΩt2 |E〉e−π(t2−t1)〈E|e−iΩt1 .

We obtain in τ -representation

V00(t)= e−πt ,
(
V01(t)|τ

)=−i(2π)1/2
∫ t

0
dt1e−π(t−t1)δ(τ − t1),

(
τ |V10(t)

)=−i(2π)1/2
∫ t

0
dt1δ(t1 − τ)e−πt1 ,

(τ2|V11(t)|τ1)= δ(τ1 − τ2)− 2π
∫∫

0<t1<t2<t
dt1dt2δ(τ2 − t2)e−π(t2−t1)δ(t1 − τ1).

So V11(t) corresponds to the case that at time 0 the atom stays in the upper level
and no emission occurs. Then (V01(t)|τ) is the probability amplitude for the case
that between 0 and t at time τ a photon, with the label τ , is absorbed, and (τ |V10(t))

is the probability amplitude that at time τ between 0 and t a photon, with label τ , is
emitted. Finally (τ2|V11(t)|τ1) is the probability amplitude that at time τ1 a photon
with label τ1 is absorbed, and at time τ2 > τ1 a photon with label τ2 is emitted, all
with 0< τ1 < τ2 < t , or that the photon passes undisturbed.

Remark that V (t) is related to the solution of the quantum stochastic differential
equation

(d/dt)U(t)=−i
√

2πa†(t)E−+U(t)− i
√

2πE+−U(t)a(t)− πE++U(t).
Here, as in Sect. 4.2.1, E±± are the matrix units of two-dimensional matrices. The
differential equation leaves the number of excitations

∫
a+(dω)a(ω)+E++

invariant, and V (t) is the restriction of U(t) to the subspace of one excitation. Quan-
tum stochastic differential equations will be discussed below in Chap. 8.

4.2.5 The Eigenvalue Problem

We start with the well-known formula

1

x ± i0
= P

x
∓ iπδ(x).
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Here P/x denotes the principal value. If f is a function differentiable at 0, then
∫

dx
P

x
f (x)= lim

ε→0

∫ ε

−ε
dx
f (x)

x
=
∫

dx
f (x)− f (0)1{|x| ≤ 1}

x
.

The equation means that, for f ∈ C1
c , the space of once continuously differentiable

functions with compact support,

lim
ε↓0

∫
dx
f (x)

x ± iε
=
∫

dxf (x)

(
P

x
∓ iπδ(x)

)
.

We continue with the observations

1

x ± i0−ω =
P

x −ω ∓ iπδ(x −ω)

and

RΩ(x ± i0)= 1

x ± i0−Ω = P

x −Ω ∓ iπδ(x −Ω)= P

x −Ω ∓ iπ |δx〉〈δx |

as, for f,g ∈ C1
c ,

〈f |RΩ(x ± i0)|g〉 =
∫

dωf (ω)
P

x −ωg(ω)∓ iπf (x)g(x).

For f ∈ C1
c , we have the limits

〈
E|R(x ± i0)f

〉=
∫

dω
P

x −ωf (ω)∓ iπf (x),

〈
f |R(x ± i0)E

〉=
∫

dω
P

x −ωf (ω)∓ iπf (x).

We define the subspace H0 ⊂H=C⊗L2(R)

H0 =
{(
c

f

)
: c ∈C, f ∈ C1

c (R)

}
.

Recall the spectral Schwartz distribution and the formulae of Sect. 3.2:

∂R(z)= πM(z),
M(x + iy)= μ(x)δ(y),

μ(x)= 1

2π i

(
R(x − i0)−R(x + i0)

)
.

Proposition 4.2.2 For ξ1, ξ2 ∈H0 we have

〈ξ1|1/(2π i)
(
R(x − i0)−R(x + i0)|ξ2

〉= 〈ξ1|μ(x)|ξ2〉 = 〈ξ1|αx〉〈αx |ξ2〉
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with

|αx〉 = 1√
x2 + π2

(
1

x|δx〉 + P
x−Ω |E〉

)
.

Proof Recall that

R(z)=
(

0 0
0 RΩ(z)

)
+
(

1
RΩ(z)|E〉

)
1

z+ iπσ(z)

(
1, 〈E|RΩ(z)

)
.

Write
(

1
RΩ(x ± i0)|E〉

)
= a ∓ iπb

with

a =
(

1
P
x−Ω |E〉

)
, b=

(
0
|δx〉
)

and

a+ =
(

1, 〈E| P
x−Ω

)
, b+ = (0, 〈δx |

)
.

Then

1

2π i

(
R(x − i0)−R(x + i0)

)

= bb+ + 1

2π i

(
(a + iπb)

1

x − iπ

(
a+ + iπb+

)− (a − iπb)
1

x + iπ

(
a+ − iπb+

))

= 1

x2 + π2
(a + xb)(a+ + xb+)= |αx〉〈αx |.

The first term comes directly from the equations forRΩ(x±0) given recently above.
The rest of the equation requires arithmetic and the definition of |αx〉. �

Recall the space E of Sect. 4.2.1, and define the subspace

E0 =
{
cE + f : c ∈C, f ∈ C1 ∩L2}

and the space of distributions

L
′
x =

∑

±
R(x ± i0)E0 =

{
f = c1

P

x −Ωg + c2δ(x −Ω)g : g ∈ E0

}
.

We extend the functional Ê to L′x and define

〈Ê|f 〉 = lim
r→∞

∫ r

−r
dωf (ω).
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As
〈
Ê

∣
∣∣∣

P

x −ΩE
〉
= lim
r→∞

∫ r

−r
dω

P

x −ω = 0

〈
Ê|δ(x −Ω)E〉= lim

r→∞

∫ r

−r
dωδ(x −ω)= 1

we obtain

〈Ê|RΩ(x ± i0)|E〉 = 〈E|RΩ(x ± i0)|Ê〉 = ∓iπ.

As RΩ(x ± i0)|Ê〉 =RΩ(x ± i0)|E〉, we have

〈Ê|RΩ(x ± i0)|Ê〉 = ∓iπ.

Define

L0 =R(z)E0.

Extend the operator Ω̂ in the same way as in Sect. 4.2.2 and obtain an operator

Ω̂ : L′x→ L
†
0;

Ω̂ acting on semilinear functionals L0 →C has the following specific properties:

Ω̂|δx〉 = x|δx〉, 〈δx |Ω̂ = 〈δx |x,

Ω̂
P

x −Ω |E〉 = −|Ê〉 + x
P

x −Ω |E〉, 〈E| P

x −Ω Ω̂ =−〈Ê| + x〈E|
P

x −Ω .

Use these equations and obtain

Proposition 4.2.3 |αx〉 is an eigenvector of Ĥ for the eigenvalue x, i.e.,

Ĥ |αx〉 = x|αx〉.

We cite the definition of a generalized eigenvector due to Gelfand-Vilenkin ([18,
p. 105]) “Let A be an operator in a linear topological space Φ . A linear functional
F on Φ such that

F(Aϕ)= λF(ϕ)
for all ϕ ∈Φ is called a generalized eigenvector corresponding to λ.” We can adapt
this definition to our situation.

Proposition 4.2.4 If ξ ∈H0, then

〈
αx |R(z)ξ

〉= 1

z− x 〈αx |ξ 〉.
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So αx is a generalized eigenvector of R(z) for the eigenvalue 1/(z− x) in the sense
of Gelfand-Vilenkin.

If ξ in the domain of H is of the form

ξ = c
(

1

RΩ(z)E

)
+
(

0

f

)

with c ∈C and f ∈ C1
c , then

〈αx |H |ξ 〉 = x〈H |ξ 〉.
So ξ is a generalized eigenvector of H for the eigenvalue x in the sense of Gelfand-
Vilenkin.

Proof The proof is carried out by straightforward calculation using the equation

〈E| P

x −Ω
1

z−Ω |E〉 = 〈Ê|
P

x −Ω
1

z−Ω |E〉

= 〈Ê| 1

z− x
(

P

x −Ω − 1

z−Ω
)
|E〉 = 1

z− x iσ(z)π.

Recollect σ(z) is the sign of the imaginary part of z. �

As

P

x
= d log |x|

dx
in the sense of Schwartz distributions, and since log |x| is locally integrable, the
function

x �→
∫

dyf (y)
P

(x − y) =
∫

dyf ′(y) log |x − y|

is continuous for f ∈ C1
c and is continuously differentiable for f ∈ C2

c .

Lemma 4.2.2 We have the formula

P

x −ω
P

y −ω =
1

y − x
(

P

x −ω −
P

y −ω
)
+ π2δ(x −ω)δ(y −ω),

which means explicitly, for f,g,h ∈ C2
c , that

ω �→
∫

dxf (x)
P

x −ω, ω �→
∫

dyg(y)
P

y −ω
are square integrable, and

(x, y) �→ 1

y − x
(∫

dωh(ω)
P

x −ω −
∫

dωh(ω)
P

y −ω
)



4.2 A Two-Level Atom Coupled to a Heat Bath of Oscillators 75

is continuous, and
∫∫∫

dx dy dωf (x)g(y)h(ω)
P

x −ω
P

y −ω

=
∫∫

dx dy f (x)g(y)

(
1

y − x
∫

dωh(ω)

(
P

x −ω −
P

y −ω
))

+ π2
∫

dωf (ω)g(ω)h(ω).

Proof We calculate
∫∫

dx dyf (x)g(y)

(
1

y − x
∫

dωh(ω)

(
P

x −ω −
P

y −ω
))

= lim
ε→0

∫∫
dx dy f (x)g(y)

× 1

y − x
(∫

dωh(ω)

(
x −ω

(x −ω)2 + ε2
− y −ω
(y −ω)2 + ε2

))

= lim
ε→0

∫∫∫
dx dy dωf (x)g(y)h(ω)

(x −ω)(y −ω)− ε2

((x −ω)2 + ε2)((y −ω)2 + ε2)

=
∫∫∫

dx dy dωf (x)g(y)h(ω)
P

x −ω
P

y −ω − π
2
∫

dωf (ω)g(ω)h(ω).

Here, at the end, we have employed the well-known limits

lim
ε→0

x −ω
(x −ω)2 + ε2

= P

x −ω,

lim
ε↓0

ε

(x −ω)2 + ε2
= πδ(x −ω). �

Lemma 4.2.3 We have
∫

dω
P

x −ω
P

y −ω = π
2δ(x − y)

or explicitly, for f,g ∈ C2
c ,

∫∫∫
dx dy dωf (x)g(y)

P

x −ω
P

y −ω = π
2
∫

dωf (ω)g(ω).

Proof We show the first expression on the right-hand side in the preceding lemma
goes to 0. Replace the function h in the lemma by hε , with hε(ω) = h(εω) and
h(ω)= 1/(1+ω2). Then

1

y − x
∫

dωhε(ω)

(
P

x −ω −
P

y −ω
)
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= 1

y − x
∫

dωεh′(εω) log
|x −ω|
|y −ω|

= 1

y − x
∫

dωh′(ω) log
|x −ω/ε|
|y −ω/ε| =

1

y − x
∫

dωh′(ω) log
|1− εx/ω|
|1− εy/ω|

∼ ε
∫

dωh′(ω)/ω

for ε→ 0 and
∫

dωh′(ω)/ω <∞.
The variables x and y can supposed to be bounded, as f and g are of compact
support. From there one obtains the result. �

Remark 4.2.2 The equation of the last lemma is well known. The equation is the
basis of the Hilbert transform.

Proposition 4.2.5 The αx are orthonormal in the generalized sense that

〈αx |αy〉 = δ(x − y).
More precisely, if f ∈ C2

c , then

∫
dx f (x)αx ∈H=C⊕L2(R)

and, if g ∈ C2
c as well, then

〈∫
dx f (x)αx

∣∣∣∣

∫
dy g(y)αy

〉
=
∫∫

f (x)g(y)δ(x − y)

=
∫

dωf (ω)g(ω)= 〈f |g〉L2 .

Proof Calculate
〈∫

dx f (x)αx

∣
∣∣∣

∫
dy g(y)αy

〉

=
〈∫

dx f (x)
1√

x2 + π2

〈
1, xδx(Ω)+P/(x −Ω)1)

∣∣∣∣
∫

dy g(y)
1

√
y2 + π2

(
1

(1, yδy(Ω)+P/(y −Ω)1
)〉

=
∫

dω
∫∫

dxdy f (x)g(y)
1√

x2 + π2

1
√
y2 + π2
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×
(

1+
(
xδ(x −ω)+ P

x −ω
)(
yδ(y −ω)+ P

y −ω
))
.

Interchange the order of integration, use the properties of the δ-function and the
P-function, and the preceding lemma, to get

=
∫∫

dxdy f (x)g(y)δ(x − y)= (f |g). �

Corollary 4.2.1 For the spectral Schwartz distribution we have the formula

M(z1)M(z2)= δ(z1 − z2)M(z1)

or, as M(x + iy)= μ(x)δ(y),
μ(x1)μ(x2)= δ(x1 − x2)μ(x1).

More precisely, if ξ = (c
f

)
, c ∈C, f ∈ C2

c , g ∈ C2
c , then

∫
dx g(x)μ(x)|ξ 〉 =

∫
dx g(x)|αx〉〈αx |ξ 〉

belongs to L2, and
〈∫

dx1 g1(x1)μ(x1)

∣∣∣∣

∫
dx2 g2(x2)μ(x2)

〉
=
∫

dx g1(x)g2(x)μ(x).

Proof Use the preceding proposition and that

x �→ 〈αx |ξ 〉
is a bounded C2 function. �

Remark 4.2.3 Compare the last formula to the result holding for spectral families
(Ex, x ∈R) namely

∫
dEx1g1(x1)

∫
dEx2g2(x2)=

∫
dEx g1(x)g2(x)

which holds for bounded Borel functions g1 and g2.

Proposition 4.2.6 The orthonormal system of the αx is complete, so
∫

dx |αx〉〈αx | = 1,

or more precisely for ξ = (c
f

)
, f ∈ C1

c ,

x �→ 〈ξ |αx〉 ∈ L2
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and, for ξ = (c
f

)
, η= (c′

g

)
, f, g ∈ C1

c , one has

∫
dx〈ξ |αx〉〈αx |η〉 = 〈ξ |η〉.

For the resolvent one obtains

R(z)=
∫

dx
1

z− x |αx〉〈αx |,

or more precisely with ξ, η as above

〈ξ |R(z)|η〉 =
∫

dx
1

z− x 〈ξ |αx〉〈αx |η〉.

Proof The resolvent

R(z)=
(

0 0
0 RΩ(z)

)
+
(

1
RΩ(z)|E〉

)
1

z+ iσ(z)

(
1, 〈E|RΩ(z)

)

is holomorphic for Im z �= 0; the function 〈ξ |R(z)|η〉 is continuous at the boundary.
By deforming the boundary one obtains that

∫ r

−r
dx 〈ξ |R(x ± i0)|η〉 = ∓

∫

Γ±
dz 〈ξ |R(z)|η〉,

where Γ± is the semicircle of radius r joining −r and r in the upper, resp. lower,
half-plane. Then

∫ r

−r
dx 〈ξ |αx〉〈αx |η〉 = 1

2π i

∫ r

−r
dx 〈ξ |(R(x − i0)−R(x + i0)

)|η〉

= 1

2π i

∫

Γ

dz〈ξ |R(z)|η〉,

where Γ is the circle of radius r . As f and g are of compact support

〈ξ |R(z)|η〉 = 1

z
〈f |g〉 +O(z−2)

and one obtains the first assertion by taking r→∞.
Assume, e.g., Im z > 0 and put F(z)= 〈ξ |R(z)|η〉, then

F(z)= 1

2π i

∫

γ

dζ
F (ζ )

ζ − z ,

where γ is a small circle in the upper half-plane encircling z. By blowing γ up so it
consists of the interval [−r, r] and the semi-circle Γ+ one arrives at

F(z)= 1

2π i

(∫

Γ+
dζ
F (ζ )

ζ − z +
∫ r

−r
dx
F(x + i0)

x − z
)
.
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In the lower half-plane one obtains similarly

0= 1

2π i

(∫

Γ−
dζ
F (ζ )

ζ − z −
∫ r

−r
dx
F(x − i0)

x − z
)
.

So

F(z)= 1

2π i

(∫

Γ

dζ
F (ζ )

ζ − z +
∫ r

−r
dx
F(x + i0)− F(x − i0)

x − z
)
.

As F(ζ )=O(ζ−2), we take r→∞ and obtain the second assertion. �

Corollary 4.2.2 If Ex is the spectral family of H , then

〈ξ |dEx |η〉 = 〈ξ |αx〉〈αx |η〉dx.

4.3 A Two-Level Atom Interacting with Polarized Radiation

4.3.1 Physical Considerations

We discuss a two-level atom with transition frequency ω0. The levels are supposed
not degenerate, and have the wave functions ψ1(x) for the upper level and ψ0(x) for
the lower level. We shall use relativistic units with � = 1 and the velocity of light
c= 1. In these units the square of charge of the electron is e2 = 1/137.

The radiation field is a system of independent oscillators labelled by λ ∈Λ

Λ=
{

m= (m1,m2,m3) ∈ Z
3,
∑
|mi | ≤M

}
× {1,2}.

Associate to k ∈ R
3 two unit vectors e1(k), e2(k) such that the three vectors

k/|k|, e1(k), e2(k) form a right-handed coordinate system (a trihedron) in R
3.

Choose a large number L> 0, and define

kλ = km,j = 2π

L
m, ωλ = |kλ| = 2π

L
|m|, eλ = ej (kλ).

We have to consider the finite system of oscillators, labelled by λ ∈Λ with fre-
quencies ωλ, given by the creation and annihilation operators aλ, a

+
λ , λ ∈ Λ. The

representation space is a pre-Hilbert space spanned by the vectors |m〉 = (a+)m|0〉,
where m runs through all multisets of Λ. The Hamiltonian is

Hrad =
∑

λ∈Λ
Hλ =

∑

λ∈Λ
ωλa

+
λ aλ.

Use the notation E10 = |ψ1〉〈ψ0| etc., then in rotating wave approximation

Htot =Hrad +Hatom +Hint =
∑

λ∈Λ
ωλa

+
λ aλ +ω0E11 +

∑

λ

(
gλaλE10 + gλa+λ E01

)
.



80 4 Four Explicitly Calculable One-Excitation Processes

One has

gλ =− e

me

√
2π

ωλ
L−3/2〈ψ1|p.eλ exp (ikλ.x)|ψ0〉,

where e is the electron charge and me the electron mass. p is the momentum oper-
ator p= (p1,p2,p3);pi =−id/dxi . If a is an estimate of the atomic radius. Then
frequency ω0 ≈ e2/a, so

aω0 ≈ e2 = 1/137.

The function exp (ikλ.x) is approximately constantly 1 until frequencies of the order
1/a. We mutilate gλ

gλ =− e

me

√
2π/ωλL

−3/2〈ψ1|p.eλ|ψ0〉c(ωλ −ω0),

where 0 ≤ c(ω) ≤ 1 and c(ω) = 1 for |ω1| # ω0 and is 0 for |ω| > ω1. To justify
this mutilation is outside the scope of this work. Using the relation

〈ψ1,i |p/me|ψ0〉 = iω0〈ψ1|x|ψ0〉
and ωλ ≈ ω0 we arrive at

gλ = ie
√

2πω0L
−3/2c(ωλ −ω0)〈ψ1|p.eλ|ψ0〉.

Introduce

Λ′ =
{

m= (m1,m2,m3) ∈ Z
3,
∑
|mi | ≤M

}
× {1,2,3}.

We imbed C
Λ into C

Λ′ . If eλ = em,j , resp. e′m,i are the standard basis vectors of

C
Λ, resp. CΛ

′
, we map

em,j �→
∑

j=1,2

(em,j )ie
′
m,i .

This means, if we consider the elements of CΛ
′
as vector fields, we affix to the point

m the vectors em,j . Similar we define annihilation and creation operators bm,i and
b+m.i for (m, i) ∈Λ′. We express the annihilation and creation operators indexed by
Λ in terms of those of indexed by Λ′,

am,j =
∑

j=1,2

(em,j )ibm,i , a+m,j =
∑

j=1,2

(em,j )ib
+
m,i .

This means physically, that we have introduced a fictitious longitudinal polarization.
Denote by Π(m) the orthogonal projector onto the plane perpendicular to m, then

Π(m)il =
∑

j=1,2

(em,j )i(em,j )l = δil −miml/|m|2.
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We have then, with km = (2π/L)m and ωm = (2π/L)|m|,

Hrad =
∑

m

ωm

∑

i,l

Π(m)ilb
+
m,ibm,l ,

Hint =
∑

m,i,l

e
√

2πω0L
−3/2c(ωm −ω0)Π(m)i,l

(
iE10(ψ1|x|ψ0)ibm,l

− iE01(ψ0|x|ψ1)ib
+
m,l

)
.

Introduce the space

X =R
3 × {1,2,3}.

Define the cube

Cm =
{
k= (k1, k2, k3) :

∣∣ki − (km)i
∣∣< π/L

}

with the volume C = (2π/L)3. Put

bm,i = C−1/2
∫

dk1Cm(k)a(k, i)= C−1/2a(Cm,i ).

For f,g ∈Ks(X), one obtains, since a(Cm,i )f ≈ Ca(k, i)f ,

〈f |Hrad|f 〉 =
∑

m,i,l

ωmΠ(m)ilC−1〈a(Cm,i )f
∣∣a(Cm,l)|f 〉

≈
∑

m,i,l

ωmΠ(m)ilC
〈
a(km,i )f

∣∣a(km,l)|f 〉

≈
∫

dk
∑

i,l

Π(k)il |k|
〈
a(k, i)f

∣∣a(k, l)|f 〉

and finally

Hrad =
∫

dk|k|
∑

i,l

Π(k)i,la†(k, i)a(k, l),

Hint =
∫

dk
∑

i,l

e
√
ω0/(2π)c

(|k| −ω0
)
Π(k)i,l

× (−iE10(ψ1|x|ψ0)ia(k, l)+ iE01(ψ0|x|ψ1)ia(k, l)†
)
.

The quantity

N =
∫

dk
∑

i,l

Π(k)i,la†(k, i)a(k, l)+E11
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is the operator for the total number of excitations and commutes with Htot. As it
gives only a trivial contribution we just consider Htot − ω0N and call it Htot once
more. So

Htot =
∫

dk
(|k| −ω0

)∑

i,l

Π(k)i,la+(k, i)a(k, l)+Hint.

We introduce polar coordinates in a slightly modified way

k= (ω+ω0)n, dk= (ω+ω0)
2dω dn.

Here n ∈ S
2 and dn is the surface element on the sphere S

2 normalized such that∫
S2 dn= 4π . As c(|k| −ω0)= c(ω) vanishes for |ω|>ω1 we have only to consider
ω for |ω|<ω1. As we assumed ω1 # ω0,

dk= ω2
0dω dn,

and we may allow ω to go from −∞ to +∞. So for the radiation our basic space X
becomes

Xrad =R× S
2 × {1,2,3},

where ω ∈R is the frequency, n ∈ S
2 the direction, and i corresponding to ei in the

standard basis of R3 is the polarization. Remark that we have introduced a superflu-
ous direction of polarization, the direction of n. We have

Htot =
∫

dω dnω2
0ω
∑

i,l

Π(n)i,la†(ω,n, i)a(ω,n, l)

+
∫

dω dnω2
0

∑

i,l

e
√
ω0/(2π)c(ω)Π(k)i,l

× (−iE10〈ψ1|x|ψ0〉ia(ω,n, l)+ iE01〈ψ0|x|ψ1〉ia(ω,n, l)†
)
.

We restrict ourselves to the case of one excitation. Then we have only to consider
the cases, that either we have the photon vacuumΦ and the atom is in the upper level
or the atom is in the lower level and a photon (ω,n, i) is present. We restrict our
state space to the space generated by the states ψ1 ⊗Φ or ψ0 ⊗ a+(ω,n, i)Φ . So
we may use as Hilbert space

H=C⊕L2(Xrad, λ)

where λ is now the measure on Xrad given by

〈λ|f 〉 =
∫∫

dωω2
0 dn

∑

i=1,2,3

f (ω,n, i).
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Consider the elements (c, f ) ∈ H, c ∈ C, f ∈K (Xrad), where K (Xrad) is the
space of continuous functions with compact support, and use the notation

Ψ (c,f )= cψ1 ⊗Φ +
∫

dλf (ω,n, i)
(
ψ0 ⊗ a+(ω,n, i)Φ

)
.

Then
〈
Ψ (c,f )

∣∣Htot
∣∣Ψ
(
c′, f ′

)〉= (c, f )
(

0 〈g|
|g〉 K

)(
c′

f ′

)

with

g(ω,n, i)= ic(ω)
∑

l

e

√
ω0

2π
Π(n)i,l〈ψ0|x|ψ1〉l ,

(Kf )(ω,n, i)= ω
∑

l

Π(n)i,lf (ω,n, l).

4.3.2 Singular Coupling

We rewrite the results of the last subsection. We consider the space

H=C⊕L2(
R× S

2 × {1,2,3})

provided with the measure λ given by

〈λ|f 〉 =
∫∫

dωω2
0 dn

∑

i=1,2,3

f (ω,n, i).

We consider the elements of L2(R× S
2 × {1,2,3}) as vector-valued functions on

R× S
2. Then H becomes

H=C⊕L2(
R× S

2,C3).

We will be studying the operator given by the matrix

Hc =
(

0 〈g|
|g〉 K

)
=
(

0 〈cv|
|vc〉 AΩA

)
;

here

g(ω,n)= c(ω)v(n),

v(n)= ie
√
ω0

2π
Π(n)〈ψ0|x|ψ1〉,

(Ωf)(ωn)= ωf (ω,n),
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(Af)(ω,n)=Π(n)f(ω,n),
K =AΩA=AΩ =ΩA,
Π(n)ij = δij − ninj ;

the function c is one with the properties 0 ≤ c(ω) ≤ 1 and c(ω) = 0 for |ω| ≥ ω1,
and the operator A is a projector, so A2 =A and Av= v.

By Krein’s formula we can calculate the resolvent

Rc(z)= 1

z−Hc =
(

0 0
0 RK(z)

)
+
(

1
RK |g〉

)
1

z− 〈g|RK(z)|g〉
(
1, 〈g|RK

)

with

RK(z)= 1

z−K = 1

z−AΩA =A
1

z−ΩA+
1

z
(1−A).

Since

Av= v

we obtain, with RΩ(z)= 1/(z−Ω),

Rc(z)=
(

0 0
0 ARΩ(z)A+ 1

z
(1−A)

)

+
(

1
RΩ(z)|vc〉

)
1

z− 〈g|RK(z)|g〉
(
1, 〈cv|RΩ(z)

)
.

We now perform the singular coupling limit and make the function c converge to
the constant function E: E(ω) = 1, in such a way that c stays bounded by E and
c(ω)= c(−ω). Then

〈g|RK(z)|g〉 = 〈c|RΩ(z)|c〉〈v|A|v〉 =
∫

dω
c(ω)2

z−ω 〈v|v〉→−iπσ(z)γ

with

γ = 〈v|v〉 =
∫

dnω2
0

〈
v(n)|v(n)〉= e2 2ω3

0

3π

∣∣〈ψ0|x|ψ1〉
∣∣2.

Here σ(z) is the sign of Im z. The resolvent becomes

R(z)=
(

0 0
0 ARΩ(z)A

)
+
(

0 0
0 1

z
(1−A)

)

+
(

1
RΩ(z)|vE〉

)
1

z+ iπσ(z)γ

(
1, 〈Ev|RΩ(z)

)
.
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The term
(

0 0
0 1

z
(1−A)

)

is the contribution of the fictitious longitudinally polarized photons and need not
to be considered further. The expression 〈E| is the linear functional f �→ 〈E|f 〉 =∫

dωf (ω), and E = |E〉 is the semilinear functional given by 〈f |E〉 = 〈E|f 〉.
For the time development we obtain, similarly to Sect. 4.2.4,

U(t)=
(
U00 U01
U10 U11

)

with

U00 = e−πγ t ,

U01 =−i
∫ t

0
dt1e−πγ (t−t1)〈E|e−iΩt1 ⊗ 〈v|,

U10 =−i
∫ t

0
dt1e−iΩ(t−t1)|E〉e−πγ t1 ⊗ |v〉,

U11 = e−iΩt ⊗A−
∫∫

0<t1<t2<t
dt1dt2e−iΩ(t−t2)|E〉e−πγ (t2−t1)〈E|e−iΩt1 ⊗ |v〉〈v|

+ 1⊗ (1−A).
We have

H0 =
(

0 0
0 AΩA

)

and

e−iH0t =
(

1 0
0 Ae−iΩtA+ 1−A

)
.

Then

V (t)= eiH0tU(t)

is given by

V00 = e−πγ t ,

V01 =−i
∫ t

0
dt1e−πγ (t−t1)〈E|e−iΩt1 ⊗ 〈v|,

V10 =−i
√

2π
∫ t

0
dt1eiΩt1 |E〉e−πγ t1 ⊗ |v〉,

V11 = 1−
∫∫

0<t1<t2<t
dt1dt2e−iΩ(t−t2)|E〉e−πγ (t2−t1)〈E|e−iΩt1 ⊗ |v〉〈v|.
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That reads in the formal time representation, as explained in Sect. 4.2.4,

V00 = e−πγ t ,

V01|τ 〉 = −i
√

2π
∫ t

0
dt1e−πγ (t−t1)δ(t − t1)〈v|,

〈τ |V10 =−i
∫ t

0
dt1δ(τ − t1)|E〉e−πγ t1 ⊗ |v〉,

〈τ2|V11τ1〉 = δ(τ1 − τ2)− 2π
∫∫

0<t1<t2<t
dt1dt2δ(τ2 − τ1)e−πγ (t2−t1)δ(t1 − τ1)

⊗ |v〉〈v|.
The matrix element U00 describes the decay of the upper state. The transition

probability is

2πγ = e2 4ω3
0

3

∣∣〈ψ0|x|ψ1〉
∣∣2,

in agreement with Landau-Lifschitz [28]. The element U10 represents the sponta-
neous emission. The integrated emitted tensor intensity, in direction n and with fre-
quency ω, for all times between 0 and ∞, is

I(ω,n)= 1

ω2 + π2γ 2

∣∣v(n)
〉〈

v(n)
∣∣

= 1

ω2 + π2γ 2

e2ω3
0

4π2

∣∣Π(n)(ψ0|x|ψ1)
〉〈
(ψ1|x|ψ0)Π(n)

∣∣.

The fraction of the emitted total intensity in direction n is

∫
dω trace

(
I(ω,n)

)= 3

8π

(
1− |〈ψ1|Π(n)x|ψ0〉|2

|〈ψ1|x|ψ0〉|2
)
= 3

8π
sin2 ϑ

where ϑ is the angle between n and 〈ψ1|x|ψ0〉.
The element U10 describes absorption, and U11 describes undisturbed transmis-

sion and scattering.

4.3.3 The Hamiltonian and the Eigenvalue Problem

The Hamiltonian corresponding to the resolvent R(z) is

H =
(

0 〈Êv|
|vÊ〉 AΩ̂A

)
,
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where the definitions of Ê and Ω̂ have to be adapted from Sect. 4.2.2 to the vector
case here. The domain of H is

D =R(z)H

=
{
c

(
1

RΩ(z)Ev

)
+
(

0

RΩ(z)Af1

)

+
(

0

(1−A)f2

)
: c ∈C, f1, f2 ∈ L2(

R× S
2,C3)

}
.

One checks immediately that

HR(z)=R(z)H =−1+ zR(z).
We discuss the eigenvalue problem in the same way as in the previous section. One
calculates in a similar way, using the fact that for

ξi =
(
ci

fi

)
, ri ∈C, fi ∈ C1

c , h ∈ C1
c , x ∈R

the expression
∫

dx h(x)(ξ1|R(x ± i0)|ξ2)
is well defined.

Proposition 4.3.1 We have, given

ξi =
(
ci

fi

)
, ci ∈C, fi ∈ C1

c ,

that, for z= x + iy, the spectral Schwartz distribution

1

π
∂z(ξ1|R(z)|ξ2)= (ξ1|μ(x)|ξ2)δ(y)

with

μ(x)= p1
x + p2

x + p3
x

and

p1
x = |αx〉〈αx |, |αx〉 = 1

√
x2 + π2γ 2

⎛

⎝

√
γ

x|vδx〉/√γ +√γ P

x −Ω |E〉

⎞

⎠ ,

p2
x =

(
0 0
0 q|δx〉〈δx |

)
, q =A− |v〉〈v|〈v|v〉 ,

p3
x = (1−A)δ(x).
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In the same way as before, we obtain the orthonormality relations

〈αx |αy〉 = δ(x − y)
and

pixp
j
y = δ(x − y)δijpi(x).

We also have completeness expressed by
∫

dx μ(x)= 1.

4.4 The Heisenberg Equation of the Amplified Oscillator

4.4.1 Physical Considerations

Consider a quantum harmonic oscillator, with the usual creation and annihilation
operators b+ and b, in a heat bath of oscillators given by a+λ , aλ, λ ∈ Λ, with the
Hamiltonian

H0 =−ω0b
+b+

∑

λ∈Λ
(ω0 +ωλ)a+λ aλ +

∑

λ∈Λ

(
gλaλb+ gλa+λ b+

)
.

This Hamiltonian, however, is not bounded below, so it cannot describe a real phys-
ical system. Nevertheless, it does enable one to discuss the initial behaviour of su-
perradiance, and can be used as the model of a photon multiplier. We now sketch
these ideas.

We consider N two-level atoms coupled to a heat bath. The Hilbert space of the
atoms is (C2)⊗N . The Hamiltonian is

HN = σ (N)3 ω0 +
∑
(ω0 +ωλ)a+λ aλ +

∑(
N−1/2gλσ

(N)
+ +N−1/2gλσ

(N)
− a+λ

)

with

σ
(N)
i = σi ⊗ 1⊗ · · · ⊗ 1+ · · · + 1⊗ · · · ⊗ 1⊗ σi,

the sum of terms with σi in all possible positions in the N -fold tensor product, and
the spin matrices are as usual given by

σ1 = 1

2

(
0 1
1 0

)
, σ1 = 1

2

(
0 i
−i 0

)
, σ3 = 1

2

(−1 0
0 1

)
,

σ+ = σ1 + iσ2 =
(

0 0
1 0

)
, σ− = σ1 − iσ2 =

(
0 1
0 0

)
.

The operators σ (N)i obey the spin commutation relations, and (C2)⊗N can be
considered as a “spin representation space”, or, in other words, as a representation
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space of the group U(2). Any irreducible representation space is invariant under the
operator H .

In the case of superradiance, at t = 0 all atoms are initially in the upper state(0
1

)
. Then, due to spontaneous emission, one atom emits a photon, the radiation

increases the probability that another atom emits a second single photon, etc. Thus
an avalanche is created, which dies out when the atoms of a majority of the N atoms
are in the lower state

(1
0

)
.

For t = 0 the state of the atomic system is
(0

1

)⊗N =ψN/2, the highest weight vec-

tor of the representation, and successive applications of σ (N)− create an irreducible
invariant subspace spanned by ψm, m=−N/2,−N/2+ 1, . . . ,N/2. One has

σ
(N)
3 ψm =mψm, σ

(N)
± ψm =

(
N

2

(
N

2
+ 1

)
−m(m± 1)

)1/2

ψm±1.

Put ϕk =ψN/2−k ; then

N−1/2σ
(N)
+ ϕk =N−1/2(Nk− k2 + k)1/2ϕk−1 →

√
k ϕk−1,

N−1/2σ
(N)
− ϕk =N−1/2(N(k + 1)− k2 + k)1/2ϕk+1 →

√
k + 1 ϕk+1.

For N →∞ the operator N−1/2σ
(N)
− becomes the creation operator b+ and the

operator N−1/2σ
(N)
+ becomes the annihilation operator b. Shifting the operator HN

by adding ω0N/2 we obtain H0. By choosing, for t = 0, the vector ψ−N/2 =
(1

0

)⊗N

we would have arrived at the same irreducible representation, and an analogous
procedure would have ended with the Hamiltonian for the damped oscillator.

We split H0 into two commuting operators H0 =H ′0 +H ′′0 with

H ′0 =
∑

λ∈Λ
ωλa

+
λ aλ +

∑

λ∈Λ

(
gλaλb+ gλa+λ b+

)
,

H ′′0 = ω0

(
−b+b+

∑

λ∈Λ
a+λ aλ

)
.

The time dependence due to H ′′0 is trivial: it describes a fast oscillation modulated
by the time development due to H ′0. We disregard it.

Put

ηt
(
b+
)= exp

(
iH ′0t

)
b+ exp

(−iH ′0t
)
,

ηt (aλ)= exp
(
iH ′0t

)
aλ exp

(−iH ′0t
)
.

Then

1

i

d

dt

(
ηt (b

+)
ηt (aλ)

)
=
∑

λ′
Hλ,λ′

(
ηt (b

+)
ηt (aλ′)

)
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with

H =
(

0 〈g|
−|g〉 Ω

)
,

where |g〉 is the column vector in C
Λ with the elements gλ, 〈g| is the row vector

with the entries gλ, and Ω is the Λ × Λ-matrix with entries ωλδλ,λ′ . As in the
first example of Sect. 4.2.1, we introduce a continuous set of frequencies. Then |g〉
becomes an L2-function and Ω the multiplication operator.

4.4.2 The Singular Coupling Limit, Its Hamiltonian
and Eigenvalue Problem

We recall the discussions of Sect. 4.2.2. We again have the Hilbert space

H=C⊕L2(R)

with the scalar product

〈
(c, f )|(c′, g)〉= cc′ +

∫
dx f (x)g(x).

In the last subsection we ended up with the block matrix

Hg =
(

0 〈g|
−|g〉 Ω

)
,

where |g〉 is an L2-function and Ω is the multiplication operator. The matrix H is
not symmetric but does satisfy the equation

JHgJ =H+g
with

J =
(−1 0

0 1

)
.

Using Krein’s formula we obtain the resolvent Rg(z) of Hg as

1

z−Hg =Rg(z)=
(

0 0
0 RΩ(z)

)
+
(

1
−RΩ(z)|g〉

)
1

Cg(z)

(
1, 〈g|RΩ(z)

)

with

Cg(z)= z− 〈g|RΩ(z)|g〉 = z−
∫ |g(ω)|2

z−ω dω.
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We perform the so-called singular coupling limit. We consider a sequence gn of
square-integrable functions, converging pointwise to E, and uniformly bounded by
some constant function with the property

gn(ω)= gn(−ω).
Then, for fixed z with Im z �= 0, the resolvents Rgn(z) converge in operator norm to

R(z)=
(

0 0
0 RΩ(z)

)
+
(

1
−RΩ(z)|E〉

)
1

z− iπσ(z)

(
1, 〈E|RΩ(z)

)
.

Recall the spaces L and L†, the functionals 〈Ê| and |Ê〉, and the operator Ω̂ from
Sect. 4.4.2. Define the operator

Ĥ :C⊕L→C⊕L
†

Ĥ =
(

0 〈Ê|
−|Ê〉 Ω̂

)
.

We have to distinguish between right and left domains Dl , resp. Dr , of the oper-
ator H corresponding to R(z):

Dl =HR(z)= {ξ ∈C⊕L : ξ = c(1, 〈E|R(z))+ (0, 〈f |R(z))},

Dr =R(z)H=
{
ξ ∈C⊕L : ξ = c

(
1

−R(z)|E〉
)
+
(

0

R(z)f

)}
,

with c ∈C, f ∈ L2. The Hamiltonian H is the restriction of Ĥ to Dl , resp. Dr . So

〈ξ |H = 〈ξ |Ĥ ,

H |ξ 〉 = Ĥ |ξ 〉,
for ξ ∈Dl , resp. for ξ ∈Dr .

The time development operator corresponding to R(z) is for t > 0

U(t)=
(
U00 U01
U10 U11

)

with

U00 = eπt ,

U01 = i
∫ t

0
dt1eπ(t−t1)〈E|e−iΩt1,

U10 =−i
∫ t

0
dt1e−iΩ(t−t1)|E〉eπt1,
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U11 = e−iΩt +
∫∫

0<t1<t2<t
dt1dt2e−iΩ(t−t2)|E〉eπ(t2−t1)〈E|e−iΩt1 .

Put

H0 =
(

0 0
0 Ω

)

and

V (t)= eiH0tU(t).

Then

V00 = eπt ,

V01 = i
∫ t

0
dt1eπ(t−t1)〈E|e−iΩt1,

V10 =−i
∫ t

0
dt1eiΩt1 |E〉eπt1 ,

V11 = 1+
∫∫

0<t1<t2<t
dt1dt2eiΩt2 |E〉eπ(t2−t1)〈E|e−iΩt1

and, in the formal time representation of Sect. 4.2.2,

V00(t)= eπt ,

(
V01(t)|τ

)= i(2π)1/2
∫ t

0
dt1eπ(t−t1)δ(τ − t1),

(
τ |V10(t)

)=−i(2π)1/2
∫ t

0
dt1δ(t1 − τ)eπt1 ,

(τ2|V11(t)|τ1)= δ(τ1 − τ2)− 2π
∫∫

0<t1<t2<t
dt1dt2δ(τ2 − t2)eπ(t2−t1)δ(t1 − τ1).

Proposition 4.4.1 The resolvent R(z) is holomorphic outside the real line and
away from the two simple poles ±iπ . The spectral Schwartz distribution M(z) =
(1/π)∂R(z) has the form

M(x + iy)= μ(x)δ(y)+ piπδ(z− iπ)+ p−iπδ(z+ iπ)

with

μ(x)= 1

2π i

(
R(x − i0)−R(x + i0)

)= |αx〉〈βx |,

|αx〉 =
(
x2 + π2)−1/2

((
1

− P
x−Ω |E〉

)
+ x
(

0

|δx〉
))
,
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〈βx | =
(
x2 + π2)−1/2

(
−
(

1, 〈E| P

x −Ω
)
+ x(0, 〈δx |

))
,

and

p±iπ = |α±iπ 〉〈β±iπ |,

|α±iπ 〉 =
(

1

− 1
±iπ−Ω |E〉

)
, 〈β±iπ | =

(
1, 〈E| 1

±iπ −Ω
)
.

Proof Write
(

1
−RΩ(x ± i0)|E〉

)
= a ± iπb

with

a =
(

1
− P
x−Ω |E〉

)
, b=

(
0
|δx〉
)
,

and
(
1, 〈E|R(x ± i0)

)= a′ ∓ iπb′

with

a′ =
(

1, 〈E| P

x −Ω
)
, b′ = (0, 〈δx |

)
.

Then

1

2π i

(
R(x − i0)−R(x + i0)

)

= bb′ + 1

2π i

(
(a − iπb)

1

x + iπ

(
a′ + iπb′

)− (a + iπb)
1

x − iπ

(
a′ − iπb′

))

= 1

x2 + π2
(a + xb)(−a′ + xb′)= |αx〉〈βx |.

The terms p±iπ are the residues of R(z) at the points ±iπ , so, e.g.,

piπ = lim
z→iπ

(z− iπ)R(z)=
(

1
− 1
π−Ω |E〉

)(
1, 〈E| 1

iπ −Ω
)
. �

It is easy to check the bi-orthonormality relations

〈αx |βy〉 = δ(x − y),
〈αx |β±iπ 〉 = 0, 〈α±iπ |βx〉 = 0,

〈α± iπ |β±iπ 〉 = 1, 〈α±iπ |β∓iπ 〉 = 0.
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Similarly to the discussions in Sect. 4.2.5, one proves the completeness condition
∫

dzM(z)= 1.

4.5 The Pure Number Process

The pure number quantum stochastic process restricted to the one-particle case is
mathematically the easiest of the four examples, but it does not seem to have a direct
physical meaning. We consider the Hamiltonian

H =
∫

dωω a†(ω)a(ω)+
(∫

dω g(ω)a†(ω)

)(∫
dω g(ω)a(ω)

)
,

with g ∈ L2(R).
The underlying Hilbert space is the Fock space. The number operator

N =
∫

dω a†(ω)a(ω)

commutes with H . The restriction of the Hamiltonian to the one-particle space
yields the operator defined in L2,

Hg =Ω + |g〉〈g|.
A slight modification of Krein’s formula is needed, and yields

Rg(z)= 1

z−Hg =RΩ(z)+
1

1− 〈g|RΩ(z)|g〉RΩ(z)|g〉〈g|RΩ(z).

We perform the so-called singular coupling limit. We consider a sequence gn
of square-integrable functions, converging to E pointwise, uniformly bounded by a
constant function, with the property gn(ω)= gn(−ω). Then, for fixed z with Im z �=
0, the resolvents Rgn(z) converge in operator norm to

R(z)=RΩ(z)+ 1

1+ iπσ(z)
RΩ(z)|E〉〈E|RΩ(z)

with σ(z)= sign Im z. The corresponding unitary evolution has, for t > 0, the form

U(t)= e−iΩt − i
1

1+ iπ

∫ t

0
dt1e−iΩ(t−t1)|E〉〈E|e−iΩt1 .

Put, for t > 0,

U(t)= e−iΩtV (t),
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so that

V (t)= 1− i
1

1+ iπ

∫ t

0
dt1eiΩ(t1)|E〉〈E|e−iΩt1 .

In the formal time representation we have

〈h|V (t)|f 〉 = 〈h|f 〉 − i
2π

1+ iπ

∫ t

0
dt1h(t1)f (t1),

or, in other words, V (t) becomes the multiplication operator

(
V (t)f

)
(τ )=

(
1− 2π i

1+ iπ
1[0,t](τ )

)
f (τ).

This unitary group was found by Chebotarev [14].
The domain of the selfadjoint operator H is a subspace of the space L defined in

Sect. 4.2.2. It is

D =R(z)L2(R)=
{
RΩ(z)

(
|f 〉 + 〈E|RΩ(z)|f 〉

1+ iσ(z)π
|E〉
)
: f ∈ L2

}
.

The Hamiltonian H is the restriction of

Ĥ = Ω̂ + |Ê〉〈Ê|
to that domain [42]. With the methods used before we calculate the spectral
Schwartz distributionM(x + iy)= μ(x)δ(y) with

μ(x)= 1

2π i

(
R(x − i0)−R(x + i0)

)= |αx〉〈αx |,

|αx〉 =
(
1+ π2)−1/2

(
P

x −Ω |E〉 + |δx〉
)
.



Chapter 5
White Noise Calculus

Abstract The creation and annihilation operators cannot be multiplied arbitrarily.
Only special monomials can be formed, which are colled admissible. Normal or-
dered monomials are admissible and products of several normal ordered monomials
depending on different variables are admissible, too. By a variant of Wick’s theorem
it can be shown, that any admissible monomial is the linear combination of normal
ordered monomials: The coefficients are products of point measures. We prove the
representation of unity by monomials of creation and annihilation operators and
investigate the duality, which changes creators in annihilators and vice versa.

5.1 Multiplication of Diffusions

Before introducing white noise, we have to offer some preliminary explanations. We
define for any locally compact space X, M+(X) to be its set of positive measures.
Let X and Y be two locally compact spaces. A continuous diffusion is (following
Bourbaki, Intégration, Chap. 5 [11]) a vaguely continuous mapping

κ :X→M+(Y ) : x �→ κx.

Using the old-fashioned way of writing we have

κ = κx(dy)= κ(x,dy).
Vaguely continuous means that the mapping x ∈X �→ ∫

κx(dy)f (y) is continuous
for any f ∈K (Y ).

We consider three types of multiplication of diffusions:

1. Let X1,X2, Y1, Y2 be four locally compact spaces, and let

κ1 :X1 →M+(Y1),

κ2 :X2 →M+(Y2)

be continuous diffusions, then we can have as the product

κ :X1 ×X2 →M+(Y1 × Y2),

W. von Waldenfels, A Measure Theoretical Approach to Quantum Stochastic Processes,
Lecture Notes in Physics 878, DOI 10.1007/978-3-642-45082-2_5,
© Springer-Verlag Berlin Heidelberg 2014
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κ(x1, x2;dy1,dy2)= κ1(x1,dy1)κ2(x2,dy2)

or

κ(x1,x2) = κ1,x1 ⊗ κ2,x2 ,

2. Let X,Y,Z be three locally compact spaces and

κ1 :X→M+(Y ),

κ2 : Y →M+(Z)

be continuous diffusions, then we can take as a second alternative product

κ :X→M+(Y ×Z),
κ(x;dy,dz)= κ1(x,dy)κ2(y,dz).

So
∫∫

κ(x;dy,dz)f (x, y)=
∫
κ1(x,dy)

∫
κ2(y,dz)f (y, z).

This product is familiar from probability theory. If κ1(x,dy) is the probability of
transition from x to y and κ2(y,dz) is the probability of transition from y to z,
then κ(x;dx,dy) is the transition probability from x to y and z.

3. Let X,Y,Z be three locally compact spaces and

κ1 :X→M+(Y ),

κ2 :X→M+(Z)

be continuous diffusions, then we can take as the third product

κ :X→M+(Y ×Z),
κ(x;dy,dz)= κ1(x,dy)κ2(x,dz).

So

κx = κ1,x ⊗ κ2,x .

Using the positivity of the diffusions it is easy to see, that all three types of
multiplications again yield positive continuous diffusions. We shall not introduce
different symbols for the multiplications, but rely on the different notations using
differentials to make clear which is in play.
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5.2 Multiplication of Point Measures

Using Bourbaki’s terminology we denote by εx the point measure at the point x ∈X.
So for f ∈K (X) we have

∫
εx(dy)f (y)= f (x).

We consider the diffusion

ε : x ∈X �→ εx ∈M+(X).

We have the three ways of defining the product of two point measures. If the four
variables x1, x2, x3, x4 are different, then we may first define the tensor product

εx1(dx2)εx3(dx4)= εx1 ⊗ εx3(dx2,dx4),
∫∫

εx1 ⊗ εx3(dx2,dx4)f (x2, x4)= f (x1, x3).

Then a second way is

εx1(dx2)εx2(dx3)=:Ex1(dx2,dx3) = εx1 ⊗ εx1(dx2,dx3),
∫∫

Ex1(dx2,dx3)f (x2, x3) = f (x1, x1).

The third possibility is

εx1(dx2)εx1(dx3)= εx1 ⊗ εx1(dx2,dx3).

That the last two products amount to the same here is a property of εx . We omit the
variable x and write only the indices, and use the notation

εxb (dxc)= ε(b, c) and Ex1(dx1,dx2)=E(1;2,3).
We want to define the product of

{
ε(bi, ci) : i = 1, . . . , n

}
.

Consider the set

S = {(b1, c1), . . . , (bn, cn)
}
,

where all the bi and all the ci are different and bi �= ci . We introduce in S the
structure of an oriented graph by defining the relation of being a right neighbor

(b, c) & (b′, c′)⇐⇒ c= b′.
An element (b, c) has at most one right neighbor, as (bi, ci) & (bj , cj ) and (bi, ci) &
(bk, ck) implies bj = bk and j = k. So the components of the graph S are either
chains or circuits.
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We have to avoid the expression εx(dx). This notion makes no sense and if one
wants to give it a sense, one runs into problems. If X is discrete, then εx(dy)= δx,y
and εx(dx) = δx,x = 1. If X = R, then εx(dy) = δ(x − y)dy, and if one wants to
approximate Dirac’s delta function one obtains εx(dx)=∞.

Consider a circuit

(1,2), (2,3), . . . , (k − 2, k − 1), (k − 1,1).

It corresponds to a product

ε(1,2)ε(2,3) · · · ε(k − 2, k− 1)ε(k − 1,1).

Integrating over x2, . . . , xk−1 one obtains ε(1,1), which cannot be defined. So in
order that

∏n
i=1 ε(bi, ci) can be defined, it is necessary that the graph S contain no

circuits.
On the other hand, if (1,2), (2,3), . . . , (k − 2, k − 1), (k − 1, k) is a chain, then

using the second form of multiplication we have

ε(1,2)ε(2,3) · · · ε(k− 2, k− 1)ε(k − 1, k)

=E(1;2,3, . . . , k)= ε⊗(k−1)
x1

(dx2, . . . ,dxk),
∫
· · ·
∫

2,3,...,k
E(1;2,3, . . . , k)f (2,3, . . . , k)= f (x1, . . . , x1).

Use the notation S− = {b1, . . . , bn} and S+ = {c1, . . . , cn}. If S contains no cir-
cuits, then any p ∈ S− \ S+ is the starting point of a (maximal) chain

(p, cp,1), (cp,1, cp,2), . . . , (cp,k−1, cp,k).

Use the notation πp = {cp,1, . . . , cp,k}. We have

ε(p, cp,1)ε(cp,1, cp,2) · · · ε(cp,k−1, cp,k)=E(p;πp)

where explicitly

E(p;πp)= ε⊗#πp
xp (dxπp ).

Finally we adopt

Definition 5.2.1 If S contains no circuits, then

ES =
n∏

i=0

ε(bi, ci)=
∏

p∈S−\S+
E(p;πp).
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5.3 White Noise Operators

Recall the generalization of the creation operator a+ to the diffusion ε : x �→ εx and
the definition

(
a+
(
ε(dy)

)
f
)
(xα)=

∑

c∈α
εxc (dy)f (xα\c).

We write for short, if b is an index,

a+
(
ε(dxb)

)= a+(dxb)= a+b .
The annihilation operator a(x)= a(εx) is the special case for the annihilation oper-
ator a(ν) (defined in Sect. 2.3)

(
a(εxb )f

)
(xα)=

(
a(xb)f

)
(xα)= f (xα+b).

We write for short

a(εxb )= ab.
If α = {b1, . . . , bn} is a set, then

a+α = a+b1
· · ·a+bn, a+∅ = 1,

aα = ab1 · · ·abn, a∅ = 1.

We shall be dealing with functions on the space X, which we recall is the space of
all tuples of elements of X:

X= {∅} +X+X2 + · · · .
Write for short

K =Ks(X).

Recall the function

Φ ∈K ; Φ(x)=
{
Φ(x)= 1 for x = ∅,
Φ(x)= 0 for x �= ∅

and the measure

Ψ ∈Ms(X); Ψ (f )= f (∅).
We define

Φα = a+α Φ,
and then

Φ∅ =Φ
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and, for α �= ∅,

Φα(xυ)= ε(υ,α) for υ ∩ α = ∅,
where

ε(υ,α)=
{∑

h:α�υ

∏n
i=1 ε(h(bi), bi) if #α = #υ,

0 otherwise.

More explicitly the last expression could have been written

∑

h:α�υ

n∏

i=1

ε(xh(bi ),dxbi )

showing the dependence on the variables of X. Here the sign � signifies a bijective
mapping. So the sum runs over all bijections from α to υ . We call Φα a measure-
valued finite-particle vector. So Φα is a continuous diffusion

Φα :X→Xα.

Extending Ψ we have

Ψaυa
+
α Φ = ε(υ,α).

Assume we are given a set σ = {s1, . . . , sm} and a set S = {(bi, ci) : i = 1, . . . , n},
where all the elements bi and ci are different. Use, as above, the notation S− =
{b1, . . . , bn} and S+ = {c1, . . . , cn}, and assume that σ ∩ S+ = ∅. We extend the
relation & of right neighbor from S to the pair (σ,S) by defining

s & (b, c)⇐⇒ s = b.
If the graph (σ,S) is without circuits and (σ ∪ S+ ∪ S−) ∩ υ = ∅, then for any
f : υ � σ , the graph

S ∪ {(c, f (c)), c ∈ υ}

is cycle-free, so there are no problems in defining ESΦσ =ΦσES .
The graph naturally is made up of a collection of chains, some of which begin

with an element in σ and some of which do not. We break up the nodes in the
graph into groups according to the chains in which they are. We carry along the first
element in the case of chains that begin in σ . All the rest of the elements in a chain
must be target elements in some edge for the relation &, i.e., in S+. Formally, we set
this out in a lemma.

Lemma 5.3.1 The set of components of the graph (σ,S) is

Γ = Γ (σ,S)= Γ1 + Γ2,

Γ1 =
{{
s, (s, cs,1), (cs,1, cs,2), . . . , (cs,ks−1, cs,ks )

}; s ∈ σ},
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Γ2 =
{{
(t, ct,1), (ct,1, ct,2), . . . , (ct,kt−1, ct,kt )

}; t ∈ S− \ (S+ + σ)
}
.

Put

ξs = {s, cs,1, . . . , cs,ks } for s ∈ σ,
πt = {ct,1, . . . , ct,kt } for t ∈ S− \ (S+ + σ),
π = S+ + σ,
"= S− \ (S+ + σ).

Then

π =
∑

s∈σ
ξs +

∑

t∈"
πt .

Note that π is made up of the nodes which are in σ , or are second components
of pairs; ρ are those nodes which are not connected to σ by a chain. This partitions
the chains into two types. The physical reason for these considerations is that there
are the chains of interactions connected to the vacuum and those which are not.

So ΦσES is a continuous diffusion

ΦσES :X×X"→M+
(
Xπ
)
,

ΦσES(xυ + x")=
∑

f :υ�σ

∏

c∈υ
E(c, ξf (c))

∏

t∈"
E(t,πt ).

Definition 5.3.1 We denote by Gn,π," the additive monoid generated by the ele-
ments of the form ΦσES , such that σ ∩ S+ = ∅ and the graph (σ,S) is circuit-free,
and that

"= S− \ (S+ + σ), π = S+ + σ, n= #σ.

We use the corresponding notation

Gπ," =
⊕

n

Gn,π,".

We define for c /∈ σ , using acΦ = 0,

acΦσ =
∑

b∈σ
ε(c, b)Φσ\b,

a+c Φσ = Φσ+c,
and obtain for b �= c, b, c /∈ σ ,

a+b a
+
c Φσ = a+c a+b Φσ ,
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abacΦσ = acabΦσ ,
aba

+
c Φσ = ε(b, c)Φσ + a+c abΦσ .

Proposition 5.3.1 Assume

f =ΦσES ∈ Gn,π,".

Then, for c /∈ π , we have
(
a+c Φσ

)
ES ∈ Gn+1,π+c,"\c

and we can define

a+c f =
(
a+c Φσ

)
ES.

If c /∈ π + ", then

(acΦσ )ES ∈ Gn−1,π,"+c
and we can define

acf = (acΦσ )ES.
Proof We only have to prove that there are no circuits created for the definitions to
be good ones.

The graph of ΦσES is (σ,S). Its set of components is Γ = Γ1 + Γ2 as above.
Assume c /∈ π and consider (a+c Φσ )ES . The corresponding graph is (S′, σ ′)= (σ +
c, S). Denote by Γ ′ = Γ ′1 + Γ ′2 the corresponding set of components of (S′, σ ′).
There are two cases:

(a) c /∈ S−, in which case Γ ′1 = Γ1 + {c},Γ ′2 = Γ2, and π ′ = π + c and "′ = ".
(b) c= t ∈ S−, so that

Γ ′1 = Γ1 +
{
t, (t, ct,1), (ct,1, ct,2), . . . , (ct,kt−1, ct,kt )

}
,

Γ ′2 = Γ2 \
{
(t, ct,1), (ct,1, ct,2), . . . , (ct,kt−1, ct,kt )

}

and π ′ = π + c and "′ = S′− \ (σ ′ + S′+)= " \ {c}.
In both cases the graph (σ + c, S) contains no circuits and (a+c Φσ )ES is defined;

we set

a+c (ΦσES)=
(
a+c Φσ

)
ES.

Assume c /∈ π + " and consider (acΦσ )ES . It consists of a sum of terms with a
graph of the form (S′′, σ ′′)= (σ \ b,S + (c, b)). Denote the corresponding sets of
components by Γ ′′1 ,Γ

′′
2 . Then we have

Γ ′′1 = Γ1 \
{
b, (bc1, bc2), . . . , (bck−1, bck )

}
,

Γ ′′2 = Γ2 +
{
(c, b), (bc1 , bc2), . . . , (bck−1, bck )

}

and π ′′ = π,"′′ = "+ {c}. The graph (σ ′′, S′′) has no circuits. �
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Definition 5.3.2 A finite sequence

W = (aϑncn , . . . , aϑ1
c1

)

with indices c1, . . . , cn and ϑi =±1 and the usual

aϑc =
{
a+c for ϑ =+1,

ac for ϑ =−1

is called admissible if

i > j =⇒ {
ci �= cj or {ci = cj and ϑi = 1, ϑj =−1}}.

So W is admissible if it contains only pairs (not necessarily neighbors) of the
form (aϑc , a

ϑ ′
c′ ) with c �= c′, or (a+c , ac) and no pairs of the form (ac, ac), (a

+
c , a

+
c )

or (ac, a+c ).
If W is an admissible sequence, define

ω(W) = {c1, . . . , cn},
ω+(W) = {ci,1≤ i ≤ n : ϑi =+1},
ω−(W) = {ci,1≤ i ≤ n : ϑi =−1}.

If

W = (aϑncn , . . . , aϑ1
c1

)

is an admissible sequence we call

M = aϑncn · · ·aϑ1
c1

an admissible monomial.
The following proposition shows that iterated creators and annihilators can be

defined in a suitable way.

Proposition 5.3.2 Assume

W = (aϑncn , . . . , aϑ1
c1

)

to be an admissible sequence. Assume disjoint index sets π and " are given and that

ω+(W)∩ π = ∅,
ω−(W)∩ (π + ") = ∅.

Define, for k = 1, . . . , n,

Wk =
(
aϑkck , . . . , a

ϑ1
c1

)
.
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Set π0 = π,"0 = " and

πk = π +ω+(Wk),
"k =

(
"+ω−(Wk)

) \ω+(Wk)
where for the sets α and β

α \ β = α \ (α ∩ β).
Then we have for the maps of Proposition 5.3.1

aϑkck : Gπk−1,"k−1 → Gπk,"k

and for the corresponding iterated maps

M = aϑncn · · ·aϑ1
c1
: Gπ,"→ Gπ ′,"′

with

π ′ = π +ω+(W),
"′ = ("+ω−(W)

) \ω+(W).

Proof For l = 1, . . . , n use the shorter notation ωl = ω(Wl) and ω±,k = ω±(Wk).
We carry out the proof by induction. The case of one operator is trivial. Assume

that we have proven the theorem for up to k − 1 operators. Assume ϑk = +1. In
order that a+ck be defined, ck /∈ πk−1, in the notation given in the theorem’s statement.
But ck /∈ π by assumption and ck /∈ ω+,k−1, since Wk is admissible. So we have a
mapping

a+ck : Gπk−1,"k−1 → Gπk−1+ck,"k−1\ck .

Now πk−1 + ck = π +ω+,k = πk and

"k−1 \ ck = ("+ω−,k−1)∩ �ω+,k−1 ∩ �{ck} = ("+ω−,k)∩ �ω+,k = "k
as ω−,k−1 = ω−,k and ω+,k−1 + ck = ω+,k .

Assume now, that ϑk =−1. In order that ack be defined,

ck /∈ πk−1 + "k−1 ⊂ π + "+ωk−1.

But ck /∈ π + " by assumption and ck /∈ ωk−1, as Wk is admissible. So we have the
mapping

ack : Gπk−1,"k−1 → Gπk−1,"k−1+ck .

But ω+,k = ω+,k−1 and

πk = π +ωk−1 = πk−1
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and

"k−1 + ck =
(
("+ω−,k−1)∩ �ω+,k−1

)∪ {ck} = ("+ω−,k)∩ �ω+,k = "k
as ck /∈ ω+,k−1. �

5.4 Wick’s Theorem

We prove a theorem analogous to that of Sect. 1.3 and to Proposition 1.7.2. The
general theorem of Sect. 1.3 cannot be applied, as the multiplication is not always
defined. But the ideas of our proof are borrowed from there.

Assume two finite index sets σ, τ and a finite set of pairs S = {(bi, ci) : i ∈ I },
such that all bi and all ci are different and bi �= ci . We extend the relation of right
neighbor to the triple (σ,S, τ ) by putting for (b, c) ∈ S, t ∈ τ

(b, c) & t⇐⇒ c= t.
Consider a triple (σ,S, τ ), σ ∩ τ = ∅, and two finite sets υ,β such that the three sets
σ ∪ S+ ∪ S− ∪ τ and υ and β are pairwise disjoint. As

(
a+σ aτΦυ

)
(β)=

∑

υ1+υ2=υ
ε(τ,υ1)ε(β,σ + υ2)

we find that the product (a+σ aτΦυ)(β)ES is defined if the graph (σ,S, τ ) is free of
circuits and we define the operator

a+σ aτES = a+σ ESaτ =ESa+σ aτ
that way.

Consider an admissible sequence W = (aϑncn , . . . , aϑ1
c1 ) and the associated sets

ω+,ω−. We define the set P(W) of all decompositions of [1, n], i.e., all sets of
subsets, of the form

p= {p+,p−, {qi, ri}i∈I
}
,

[1, n] = p+ + p− +
∑

i∈I
{qi, ri},

p+ ⊂ ω+, p− ⊂ ω−, qi ∈ ω−, ri ∈ ω+, qi > ri .

Lemma 5.4.1 AssumeW to be admissible and p ∈P(W). Then the graph (σ,S, τ )
with

σ = {cs : s ∈ p+}, S = {(cqi , cri ) : i ∈ I
}
, τ = {ct : t ∈ p−}

has no circuits.
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Proof Let (cq, cr ) & (cq ′ , cr ′), then cr = cq ′ and r > q ′ as W is admissible. By the
definition of p we have q > r and q ′ > r ′, so q > r > q ′ > r ′, and if we have a
sequence (cq1 , cr1)&· · ·&(cqk , crk ), then q1 > r1 > · · ·qk > rk and as ϑ1 =−1, ϑk =
+1 we have cq1 �= crk asW is admissible. This proves that S is without circuits. For
the other components of the graph one uses similar arguments. �

Definition 5.4.1 For p ∈P(W) we define

�W�p =
∏

s∈p+
a+cs
∏

i∈I
ε(cqi , cri )

∏

t∈p−
act .

Theorem 5.4.1 (Wick’s theorem) IfW is admissible and ifM is the corresponding
monomial, then

M =
∑

p∈P(W)
�W�p.

Proof We proceed by induction. The case n = 1 is clear. We write for short pi =
(qi, ri), ε(c(pi ))= ε(cqi , cri ). Assume

V = (aϑncn , . . . , aϑ1
c1

)

to be admissible and set

N = aϑncn · · ·aϑ1
c1
.

Consider W = (acn+1 ,V ) and define a mapping ϕ− :P(W)→P(V ) consisting in
erasing n+ 1. Then n+ 1 may occur in one of the pi , say in pi0 , or in p−. In the first
case

ϕ−p=
{
p+ + {ri0}, (pi )i∈I\i0, p−

}

in the second case

ϕ−p=
{
p+, (pi )i∈I , p− \ {n+ 1}}.

Assume

q= {q+, (qj )j∈J , q−
} ∈P(V )

then

ϕ−1− q= {p : ϕ−p= q} = {p(0),p(l), l ∈ q+
}
,

p
(0) = {q+, (qj )j∈J ,q− + {n+ 1}},
p
(l) = {q+ \ l, (qj )j∈J , (n+ 1, l),q−

}
.

Consider

acn+1�V �q = acn+1

∏

s∈q+
a+cs
∏

j∈J
ε
(
c(qj )

) ∏

t∈q−
act
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=
∏

s∈q+
a+cs
∏

j∈J
ε
(
c(qj )

) ∏

t∈q−+{n+1}
act

+
∑

l∈q+

∏

s∈q+\l
a+cs
∏

j∈J
ε(c(qj )ε(cn+1, cl)

∏

t∈q−
act

=
∑

p∈ϕ−1− (q)

�W�p.

Finally

acn+1N =
∑

q∈P(V )
acn+1�V � =

∑

q∈P(V )

∑

p∈ϕ−1− (q)

�W�p =
∑

p∈P(W)
�W�p.

Consider now W = (a+cn+1
,V ) and define a map ϕ+ :P(W)→P(V ) consisting

in erasing n+ 1 then

ϕ+p=
{
p+ \ {n+ 1}, (pi )i∈I , p−

}
,

ϕ−1+ q= {q+ + {n+ 1}, (qj )j∈J ,q−+
}
,

a+cn+1
�V �q = �W�ϕ−1+ q

.

By the same reasoning as above one finishes the proof. �

5.5 Representation of Unity

We extend the functional Ψ to Gn,π," by putting

ΨΦσ =
{

1 for σ = ∅,
0 otherwise

and

ΨΦσES = (ΨΦσ )ES.

Definition 5.5.1 Assume

W = (aϑncn , . . . , aϑ1
c1

)

to be admissible and

M = aϑncn · · ·aϑ1
c1
.

Then we define

〈M〉 =
∑

p∈P0(W)

�W�p.
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Here P0(W) is the set of partitions of [1, n] into pairs {qi, ri}i=1,...,n/2 such that
q1 > ri,ϑqi =−1, ϑri =+1, and

�W�p =
∏

i

ε(bi, ci).

If n is odd or P0(W) is empty, then 〈M〉 = 0.

As a consequence of Wick’s Theorem 5.4.1 we obtain

Proposition 5.5.1 We obtain

(MΦ)(∅)= ΨMΦ =
{

0 if ϑ1 + · · · + ϑn �= 0,

〈M〉 if ϑ1 + · · · + ϑn = 0.

If M is admissible, then

(MΦβ)(α)= ΨaαMa+β Φ =
〈
aαMa

+
β

〉
.

We shall use this notation very often.

Theorem 5.5.1 If M =M2M1 is admissible, then

〈M〉 =
∫

α

Δα
〈
M2a

+
α

〉〈aαM1〉.

Proof Assume

M = aϑncn · · ·aϑ1
c1
,

M2 = aϑncn · · ·aϑkck ,
M1 = aϑk−1

ck−1 · · ·aϑ1
c1
.

We prove the theorem by induction with respect to k. For k = n we have

Ψa+α aαMΦ =
{
〈M〉 for α = ∅,
0 otherwise.

Integration yields the result. Put M ′
2 = aϑncn · · ·aϑk+1

ck+1 . Assume ϑk =−1. Then

∫

α

Δα
〈
M2a

+
α

〉〈aαM1〉 =
∫

α

Δα
〈
M ′

2acka
+
α

〉〈aαM1〉

=
∫

α

Δα
∑

b∈α

〈
M ′

2a
+
α\b
〉〈aαM1〉ε(ck, b)
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=
∫

α

Δα

∫

b

〈
M ′

2a
+
α

〉〈aα+bM1〉ε(ck, b)

=
∫

α

Δα
〈
M ′

2a
+
α

〉〈aαackM1〉.

In a similar way one proves
∫

α

Δα
〈
M ′

2a
+
α

〉〈
aαa

+
ck
M1
〉=
∫

α

Δα
〈
M ′

2a
+
ck
a+α
〉〈aαM1〉. �

5.6 Duality

We fix a positive measure λ on X, and instead of writing e(λ) we shall just continue
to write λ when there are indexed variables like xα , and so by abuse of notation

e(λ)(dxα)= λ⊗α(dxα)= λ(dxα)= λ(α)= λα.
We define the measure Λ on Xk given by

∫
Λ(1, . . . , k)f (1, . . . , k)

=
∫
Λ(dx1, . . . , dxk)f (x1, . . . , xk)=

∫
λ(dx)f (x, . . . , x).

So we have

λ(1)ε(1,2) · · · ε(k − 1, k)=Λ(1,2, . . . , k).
Assume

W = (aϑncn , . . . , aϑ1
c1

)
,

to be an admissible sequence with ϑ1 + · · ·ϑn = 0. Define as usual ω±(W)= {ci :
ϑi =±1}. Recall from Theorem 5.4.1 that

〈M〉 =
∑

p∈P0(W)

�W�p.

Here P0(W) is the set of partitions of [1, n] into pairs {qi, ri}i=1,...,n/2 such that
q1 > ri,ϑqi =−1, ϑri =+1, and

�W�p =
∏

i

ε(bi, ci).

Call S(p) the graph related to p and Γ (S(p)) the set of components of the graph. To
any s ∈ S−(p) \ S+(p) there is associated a component. As

S−(p) \ S+(p)= ω−(W) \ω+(W)= "



112 5 White Noise Calculus

for any p, we obtain

〈M〉λ(")=
∑

p∈P0(W)

�W�pλ(")=
∑

p∈P0(W)

∏

γ∈Γ (S(p))
Λ(γ ).

Definition 5.6.1 Assume

W = (aϑncn , . . . , aϑ1
c1

)
,

to be an admissible sequence, then define the formally adjoint sequence by

W+ = (a−ϑ1
c1
, . . . , a−ϑncn

)
.

If M is the monomial corresponding to W , we denote by M+ the monomial
corresponding to W+.

W+ is admissible as well. Using the symmetry of Λ one sees that

Theorem 5.6.1

〈M〉λ(ω−(W) \ω+(W)
)= 〈M+〉λ

(
ω+(W) \ω−(W)

)
.



Chapter 6
Circled Integrals

Abstract The circled integral will be needed to treat quantum stochastic differential
equations. We solve a circled integral equation, introduce the class C 1, which has
remarkable analytical properties, and show, that the solution is a C 1 function.

6.1 Definition

We use the notation R for

R= {∅} +R+R
2 + · · · .

We provide R with the measure e(λ) induced by the Lebesgue measure λ, and write
for short e(λ)(dtα)= dtα = λα . So for a symmetric function

∫
Δαf (tα)dtα = f (∅)+

∞∑

n=1

1

n!
∫
· · ·
∫

Rn

dt1 · · ·dtnf (t1, . . . , tn)

= f (∅)+
∞∑

n=1

∫
· · ·
∫

t1<···<tn
dt1 · · ·dtnf (t1, . . . , tn).

Definition 6.1.1 Assume given a Banach algebra B and a function x

x :R×R
k→B,

(t,w1, . . . ,wk) �→ xt (w1, . . . ,wk)

symmetric in any of the variables w1, . . . ,wk , and locally integrable in norm with
respect to the Lebesgue measure on R ×Rk . Let there be given a Lebesgue inte-
grable function f :R→C. The circled integral

∮ j
(f )x is defined by

(∮ j

(f )x

)
(tα1 , . . . , tαk )=

∑

c∈αj
f (tc) xtc (tα1 , . . . , tαj−1 , tαj \c, tαj+1 , . . . , tαk ).

The circled integral has been called Skorohod integral by P.A. Meyer [34].

W. von Waldenfels, A Measure Theoretical Approach to Quantum Stochastic Processes,
Lecture Notes in Physics 878, DOI 10.1007/978-3-642-45082-2_6,
© Springer-Verlag Berlin Heidelberg 2014
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Remark 6.1.1 The function

(w1, . . . ,wk) ∈R
k �→

(∮ j

(f )x

)
(tα1 , . . . , tαk ) ∈B

is symmetric in each of the variables tαi and locally integrable.

Proof The symmetry is trivial; for local integrability it is sufficient that all func-
tions have values ≥ 0. Let g(tα1 , . . . , tαk ) be a continuous function with g ≥ 0 and
compact support, symmetric in any of the tαi , then by the sum-integral lemma, The-
orem 2.2.1,

∫
· · ·
∫ (∮ j

(f )x

)
(tα1 , . . . , tαk )g(tα1 , . . . , tαk )dtα1 · · ·dtαkΔα1 · · ·Δαk

=
∫

R

∫
· · ·
∫
f (tc)xtc (tα1 , . . . , tαk )

× g(tα1, . . . , . . . , tαj+c, . . . , tαk )dtcdtα1 · · ·dtαkΔα1 · · ·Δαk <∞. �

6.2 A Circled Integral Equation

Definition 6.2.1 Consider the subset

{
(tα1 , . . . , tαk ) ∈R

k : all ti for i ∈ α1 + · · · + αk are different
};

this differs from the set Rk by a null set. We define on this set a mapping Ξ onto
S(R× {1, . . . , k}), where S denotes the set of finite subsets, by mapping

(tα1, . . . , tαk ) �→ ξ = {(s1, i1), . . . , (sn, in)
}

where

tα1 + · · · + tαk = {s1, . . . , sn},
il = j ⇔ sl ∈ tαj .

That is we list all the variables occurring in the tαj as sl’s and add a second index,
showing in which block j a variable occurs, to make an entry (sl, j).

Definition 6.2.2 We are given the Banach algebra B; assume A1, . . . ,Ak,B ∈B

and that all points in the following subset of R

{s, t} ∪ {ti : i ∈ α1 + · · · + αk}
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are different, which holds a.e., and define

u(A1, . . . ,Ak,B) :
{
s, t ∈R

2, s < t
}×R

k

�→ uts(A1, . . . ,Ak,B)(tα1 , . . . , tαk ) ∈B

by

uts(A1, . . . ,Ak,B)(tα1 , . . . , tαk )

= 1{s < s1 < · · ·< sn < t} exp
(
(t − sn)B

)
Ain exp

(
(sn − sn−1)B

)
Ain−1

× · · · ×Ai2 exp
(
(s2 − s1)B

)
Ai1 exp

(
(s1 − s)B

)

where the renumbering of variables defined above is

Ξ(tα1 , . . . , tαk )=
{
(s1, i1), . . . , (sn, in)

}

with

s1 < · · ·< sn.

Define the unit function

e :Rk→B,

e(tα1 , . . . , tαk ) =
{

1 if tα1 = · · · = tαk = ∅,
0 otherwise.

Write, for short,
∮ j

s,t

=
∮ j

(1]s,t[).

Theorem 6.2.1 Assume A1, . . . ,Ak,B ∈B and that

x : (t, tα1 , . . . , tαk ) ∈R×R
k �→ xt (tα1 , . . . , tαk ) ∈B

is a symmetric function in each of the variables tαi and locally integrable. Consider
for t > s the equation

xt = e+
k∑

j=1

Aj

∮ j

s,t

x +
∫ t

s

Bxu du.

Then

xt = uts(A1, . . . ,Ak,B)

is the unique solution of that equation.
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Proof The proof is very similar to that of [41, Lemma 6.1]. We include it for com-
pleteness. Using the renumbering Ξ we rewrite the equation in terms of

ξ = {(s1, i1), . . . , (sn, in)
}
, s1 < · · ·< sn,

and to spare ourselves further heavy notation we view a pair (sj , ij ) as also denoting
the variable in the tαi to which it corresponds, namely Ξ−1({(sj , ij )}); we extend
this then to all of ξ . With this convention we obtain a rewritten form of the equation
to be solved, with a sum running now to n over the list of all the variables in the k
different tαi ,

xt (ξ)= e(ξ)+
n∑

l=1

Ail xsl
(
ξ \ (sl, il)

)
1{s < sl < t} +B

∫ t

s

xu(ξ)du.

Then we can make use of the equation

xt (∅)= 1+B
∫ t

s

xu(∅)du

whose solution is

xt (∅)= exp
(
(t − s)B).

We want to prove by induction that xt (ξ)= 0 if {s1, . . . , sn} �⊂ ]s, t[.
Assume n = 1 and s1 /∈ ]s, t[; then, looking at the equation above for ξ =

xt ({(s1, i1)}) we see the e(ξ) term vanishes since ξ �= ∅, the second term vanishes
because the set in {s < si < t} is empty, and we are left with

xt
({
(s1, i1)

})= B
∫ t

s

xu
({
(s1, i1)

})
du

which has only the solution, namely xt ({(s1, i1)})= 0.
With n > 1, if {s1, . . . , sn} �⊂ ]s, t[, since the sj were chosen ordered, then at least

one of the si , either s1 or sn, is not in ]s, t[. Assume s1 /∈ ]s, t[, then

xt (ξ)=
n∑

l=2

Ail1{s < sl < t}xsl
(
ξ \ (sl, il)

)+B
∫ t

s

xu(ξ)du.

The first sum vanishes, since, for each contribution, s1 < s is still contained in the
shorter set of indices ξ \ (sl, il) so the induction hypothesis applies; the integral
contribution vanishes as argued above; therefore xt (ξ)= 0.

Now if {s1, . . . , sn} ⊂ ]s, t[, then xsl (ξ \ (sl, il))= 0 for l < n, since

{s1, . . . , sn} \ sl �⊂ ]s, sl[;
similarly xu(ξ)= 0 for u < sn. So we are left with the final contribution

xt (ξ)=Ainxsn
({
(s1, i1), . . . , (sn−1, in−1)

})+B
∫ t

sn

xu(ξ)du.
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But it is known how to solve this integral equation, and we get

xt (ξ)= eB(t−sn)Ainxsn
(
(s1, i1), . . . , (sn−1, in−1)

)
.

Repeating this procedure to pull out all the exponential terms we finally obtain, as
asserted,

xt (ξ)= 1{s < s1 < · · ·< sn < t} exp
(
(t − sn)B

)
Ain exp

(
(sn − sn−1)B

)
Ain−1

× · · · ×Ai2 exp
(
(s2 − s1)B

)
Ai1 exp

(
(s1 − s)B

)

= uts(A1, . . . ,Ak,B)(tα1 , . . . , tαk ). �

In a similar way one proves, for the lower variable s of the evolution,

Proposition 6.2.1 For s < t , the function

s �→ ys = uts(A1, . . . ,Ak,B)

is the unique solution of the equation

ys = e+
k∑

j=1

(∮ j

s,t

y

)
Aij −

∫ t

s

yuduB.

Proof Similar to the previous theorem’s proof. �

Remark 6.2.1 Again use the representation Ξ , and write

ust (A1, . . . ,Ak,B)(tα1 , . . . , tαk )= uts(ξ)
with

ξ = {(s1, i1), . . . , (sn, in)
}

and s1 < · · ·< sn,
and assuming s < r < t and sj−1 < r < sj ; then

uts(ξ)= utr (ξ2)urs (ξ1)
with

ξ1 =
{
(s1, i1), . . . , (sj−1, ij−1)

}
,

ξ2 =
{
(sj , ij ), . . . , (sn, in)

}
.

6.3 Functions of Class C 1

It will be important for later calculations that we are working with what are called
C 1-functions.
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Definition 6.3.1 Assume a function

x : (t, tα1 , . . . , tαk ) ∈R×R
k �→ xt (tα1 , . . . , tαk ) ∈B

is symmetric in each of tα1, . . . , tαk . Then x is called of class C 0 if the function is
locally integrable and continuous in the subspace where all points t, ti , i ∈ α1 +
· · ·αk , are different. We call x of class C 1 if it is of class C 0 and if, on the same
subspace, the functions

(
∂cx
)
t
(tα1 , . . . , tαk ) =

d

dt
xt (tα1 , . . . , tαk ),

(
R
j
±x
)
t
(tα1 , . . . , tαk ) = xt±0

(
tα1 , . . . , tαj−1 , tαj + {t}, tαj+1, . . . , tαk

)

exist for j = 1, . . . , k, and are of class C 0. Here d/dt = ∂c is the usual derivative
at the points of ordinary differentiability, and Rj± denote respectively the limits at t
from above and below, which are assumed to exist where the function is not contin-
uous. Put

Djx =Rj+x −Rj−x.
Proposition 6.3.1 If xt is of class C 1, then on the subspace

S ⊂R
k = {(tα1 , . . . , tαk )

}
,

where all points ti , i ∈ α1, . . . , αk are different, the function xt (tα1 , . . . , tαk ) has left
and right limits at every point t , so xt±0(tα1 , . . . , tαk ) are well defined and we have
for s < t

xt−0 = xs+0 +
∫ t

s

dt ′∂cxt ′ +
k∑

j=1

∮ j

s,t

Djx.

Conversely, if k + 1 functions f0, . . . , fk of type C 0 are given, and g is locally
integrable and continuous on S, then

xt = g+
∫ t

s

dt ′f0
(
t ′
)+

k∑

j=1

∮ j

s,t

fj

is of type C 1, and
(
∂cx
)
t
(tα1 , . . . , tαk ) = f0(tα1, . . . , tαk ),

(
Djx

)
t
(tα1 , . . . , tαk ) = fj (tα1 , . . . , tαk ).

Hence
(
R
j
−x
)
t
(tα1 , . . . , tαk )= x(t)(tα1 , . . . , tαk ),

(
R
j
+x
)
t
(tα1 , . . . , tαk )= x(t)(tα1 , . . . , tαk )+

(
Djx

)
t
(tα1 , . . . , tαk ).
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Proof We have that, on S, the function xt is continuous if t is not one of the variables
in tα1+···+αk . If t is a variable in tα1+···+αk , e.g., t is a variable in tαj , we obtain

xt±0(tα1 , . . . , tαk )=
(
R
j
±x
)
t

(
tα1, . . . , tαj−1, tαj \ {t}, tαj+1, . . . , tαk

);
but the right-hand side is well defined, because t is not amongst the variables of
tα1+···+αj−1+αj+αj+1+···+αk \ {t}. So xt±0 is well defined on S.

To finish the proof we discuss only the case k = 1, since for general k we can use
analogous reasoning using the representation Ξ . Assume then we have α = α1, so

tα ∩ ]s, t[ = {s1 < · · ·< sn}
and put s0 = s, sn+1 = t ; then

xt−0(tα)− xs+0(tα)=
n∑

i=0

∫ si+1

si

dt ′∂cx
(
t ′
)
(tα)+

n∑

i=1

(
xsi+0(tα)− xsi−0(tα)

)

=
∫ t

s

dt ′∂cx
(
t ′
)
(tα)+

n∑

i=1

(Dx)si (tα \ si)

=
∫ t

s

dt ′∂cx
(
t ′
)
(tα)+

∮

s,t

(Dx)(tα)

since we naturally write D1 =D and
∮ 1 = ∮ . �

Proposition 6.3.2 For fixed s, the function u·s : t �→ uts(Ai,B), and for fixed t , the
functions ut· : s �→ uts(Ai,B), are each of class C 1, and one has

∂c
t u
t
s = Buts,

(
R
j
+u·s
)
t
= Ajuts,

(
R
j
−u·s
)
t
= 0,

∂c
s u
t
s = −utsB,

(
R
j
+ut·
)
s
= 0,

(
R
j
−ut·
)
s
= utsAj

for j = 1, . . . , k.

Proof By straight-forward calculation. �

We recall the definition of the Schwartz test functions on the real line. They make
up the space C∞c (R) of infinitely differentiable functions of compact support.
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Definition 6.3.2 For f locally integrable on R, the Schwartz derivative is the func-
tional given by

(∂f )(ϕ)=−
∫
f (t)ϕ′(t)dt

for Schwartz test functions ϕ. If the functional is given by

(∂f )(ϕ)=
∫
g(t)ϕ(t)dt,

where g is locally integrable, we write

g = ∂f.

If f is continuously differentiable except at a finite set of points {t1, . . . , tn}, then
its Schwartz differential is the measure

∂f = ∂cf +
n∑

i=1

(
f (ti + 0)− f (ti − 0)

)
εti (dt),

where ∂cf is the usual derivative outside the jump points, and εt is the point measure
in the point t .

We extend the notion of the circled integral to the vaguely continuous measure-
valued function ε : x �→ εx by defining

(∮ j

ε(dt)x

)
(tα1 , . . . , tαk )=

∑

c∈αj
εtc (dt) xtc (tα1 , . . . , tαj−1 , tαj \c, tαj+1 , . . . , tαk ).

This expression is scalarly defined, i.e., for any function f with compact support in
R we have

∫ (∮ j

ε(dt)x

)
f (t)=

∮ j

(f )x.

Proposition 6.3.3 If x is of class C 1, then its Schwartz derivative is

(∂xt )(dt)=
(
∂cx
)
t
dt +

k∑

j=1

∮ j

ε(dt)
(
Djx

)
.

Proof We calculate

−
∫
· · ·
∫
Δα1 · · ·Δαkdtα1 · · ·dtαkg(tα1 , . . . , tαk )

∫
dt ϕ′(t)xt (tα1 , . . . , tαk )

where g is a continuous function of compact support. It is sufficient to calculate
the integral outside the null set where all the ti , for i ∈ α1 + · · · + αk , are different.
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Using the representation (Definition 6.2.1)

Ξ(tα1 , . . . , tαk )= ξ =
{
(s1, i1), . . . , (sn, in)

}

with s1 < · · ·< sn, we may write

−
∫

dt ϕ′(t)xt (tα1 , . . . , tαk )=−
∫

dt ϕ′(t)xt (ξ)

=
∫

dt ϕ(t)∂cxt (ξ)+
n∑

j=1

ϕ(tj )
(
xsj+0(ξ)− xsj−0(ξ)

)
.

The second term equals

k∑

j=1

∑

c∈αj
ϕ(tc)

(
xtc+0(tα1 , . . . , tαk )− xtc−0(tα1 , . . . , tαk )

)

=
k∑

j=1

∑

c∈αj
ϕ(tc)

(
Djx

)
tc
(tα1 , . . . , taj \c, . . . , tαk )

=
k∑

j=1

(∮ j

(ϕ)Djx

)
(tα1 , . . . , tαk ).

From there one obtains the proposition immediately. �



Chapter 7
White Noise Integration

Abstract We define integrals of normal ordered monomials. These integrals are
scalarly defined as sesquilinear forms over Ks(X, k), the space of all symmetric,
continuous functions of compact support with values in a Hilbert space k. We can de-
fine products of those objects as scalarly defined integrals. We define C 1-processes
and calculate their Schwartz derivatives. We prove Ito’s theorem for C 1-processes.

7.1 Integration of Normal Ordered Monomials

In the following we shall, if not otherwise stated, skip Δα etc. in the integrals. So
we write, e.g.,

∫
μ(dα) for

∫
μ(dα)Δα.

Recall that this expression stands for

∫
μ(dα)= μ(∅)+

∞∑

n=1

1

n!
∫
· · ·
∫
μ(dx1, . . . ,dxn).

With this simplified notation the sum-integral lemma, Theorem 2.2.1, reads

∫

α1

· · ·
∫

αk

μ(dxα1, . . . ,dxαk )=
∫

α

∑

α1+···+αn=α
μ(dxα1, . . . ,dxαk )

or, by neglecting the dx,

∫

α1

· · ·
∫

αk

μ(α1, . . . , αk)=
∫

α

∑

α1+···+αk=α
μ(α1, . . . , αk).

Recall an admissible monomial is of the form (Definition 5.3.2)

M = aϑncn · · ·aϑ1
c1
.
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Let S+ be the set of all i, such that ϑi = +1, and S− the set of all i, such that
ϑi =−1. If λ is the base measure, we will use the fact, that

〈M〉λS−\S+
is a positive measure in the usual sense on an appropriate space. We shall denote by
〈Φ| the measure, concentrated on ∅, which we denoted by Ψ in Sect. 2.1 So

〈Φ|f 〉 = f (∅).
A monomial

M = aϑncn · · ·aϑ1
c1

is called normal ordered if all the creators a+c are to the left of the annihilators ac ,
i.e.,

ϑi =+1, ϑj =−1=⇒ i > j.

Using the commutation relations it is clear that any normal ordered monomial
can be brought into the form

a+(dxs1) · · ·a+(dxsl )a+(dxt1) · · ·a+(dxtm)
a(xt1) · · ·a(xtm)a(xu1) · · ·a(xun)= a+σ+τ aτ+υ,

with

σ = {s1, . . . , sl}, τ = {t1, . . . , tm}, υ = {u1, . . . , un}.
Assume five finite, pairwise disjoint, index sets π,σ, τ,υ,ρ and consider the

admissible monomial aπa
+
σ+τ aτ+υa+ρ . The indices of creators make up the set

S+ = σ+τ+ρ, and the indices of annihilators S− = π+τ+υ . So S−\S+ = π+υ .
Following Sect. 5.6, 〈aπa+σ+τ aτ+υa+ρ 〉λπ+υ is for fixed #π,#σ,#τ,#υ,#ρ, a mea-

sure on X#(π+σ+τ+υ+ρ). Letting the numbers #π,#σ,#τ,#υ,#ρ run from 0 to ∞
we arrive at a measure m on X5

m=m(π,σ, τ,υ,ρ)= 〈aπa+σ+τ aτ+υa+ρ
〉
λπ+υ.

Using Theorem 5.5.1 and Theorem 5.6.1, we obtain (forgetting about the Δω),

m=
∫

ω

〈
aωaσ+τ a+π

〉〈
aωaτ+υa+ρ

〉
λω+σ+τ+υ

=
∫

ω

ε(σ + τ +ω,π)ε(τ + υ +ω,ρ)λω+σ+τ+υ.

If ϕ ∈Ks(X
5) then

∫
m(π,σ, τ,υ,ρ)ϕ(π,σ, τ,υ,ρ)=

∫
ϕ(σ + τ +ω,σ, τ,υ, τ +υ+ω)λω+σ+τ+υ,

(forgetting about the Δσ,Δτ, . . .).
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Assume we have a Hilbert space k with a countable basis. We often write the
scalar product x, y �→ 〈x, y〉 in the form x+y by introducing the dual vector x+. We
denote by B(k) the space of bounded linear operators on k. We provide B(k) with
the operator norm topology. If A ∈ B(k), then A+ denotes the adjoint operator.

Assume the function F : X3 → B(k) is locally λ-integrable, i.e., locally inte-
grable with respect to e(λ)⊗3, and f,g ∈Ks(X, k) (continuous in the norm topology
of k). The integral

∫
m(π,σ, τ,υ,ρ)f+(π)F (σ, τ,υ)g(ρ)

=
∫
f+(σ + τ +ω)F(σ, τ,υ)g(τ + υ +ω)λω+σ+τ+υ = 〈f |B(F )|g〉

exists and defines a sesquilinear form on Ks(X, k). We may say that

B(F )=
∫
F(σ, τ,υ)a+σ+τ aτ+υλυ

is scalarly defined as a sesquilinear form in f,g by using

〈f | =
∫
f+(π)〈Φ|aπλπ , |g〉 =

∫
g(ρ)a+ρ |Φ〉;

note that a+ρ is a measure but aπ has to be multiplied with the base measure λπ . We
shall use the following formulas, which can be established easily.

Lemma 7.1.1

aωa
+
ρ |Φ〉 =

∑

α⊂ω
ε(ω,α)a+ρ\α|Φ〉,

a+ω aωa+ρ |Φ〉 =
∑

α⊂ω
ε(ω,α)a+ρ |Φ〉,

〈Φ|aπa+ω =
∑

α⊂π
ε(α,ω)〈Φ|aπ\α,

〈Φ|aπa+τ aτ =
∑

α⊂π
ε(α, τ )〈Φ|aω\α.

Proposition 7.1.1 The sesquilinear form 〈f |B(F )|g〉 induces a mapping O(F )
from Ks(X) into the locally λ-integrable functions on X, and we have

〈f |B(F )|g〉 =
∫
f+(ω)

(
O(F )g

)
(ω)λω =

〈
f |O(F )g〉

λ
,

(
O(F )g

)
(ω)=

∑

α⊂ω

∑

β⊂ω\α

∫

υ

λυF (α,β,υ)g(ω \ α+ υ).
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If we define

F+(σ, τ,υ)= F(υ,σ, τ )+,
we obtain

〈
f |O(F )g〉

λ
= 〈O(F+)f |g〉

λ
.

Proof We have

m= 〈aπa+σ+τ aτ+υa+ρ
〉
λπ+υ = 〈Φ|aπa+σ+τ aτ+υa+ρ |Φ〉λπ+υ.

Now

〈Φ|aπa+σ =
∑

α⊂π
ε(α,σ )〈Φ|aπ\α

and

〈Φ|aωa+τ aτ =
∑

β⊂ω
ε(β, τ )〈Φ|aω\β.

From there one obtains the first formula. Using the results of Sect. 5.6, we have

m(π,σ, τ,υ,ρ)=m(ρ,υ, τ, σ,π)

and obtain
〈
f |O(F )g〉

λ
= 〈g|O(F+)f 〉

λ
= 〈O(F+)f |g〉

λ
. �

Consider a new longer similar expression, a measure on X8,

m(π,σ1, τ1, υ1, σ2, τ2, υ2, ρ)=
〈
aπa

+
σ1+τ1aτ1+υ1a

+
σ2+τ2at2+υ2a

+
ρ

〉
λπ+υ1+υ2 .

Assume F,G :X3 → B(k) to be λ-measurable and define

〈f |B(F,G)|g〉

=
∫

m(π,σ1, τ1, υ1, σ2, τ2, υ2, ρ)f
+(π)F (σ1, τ1, υ1)G(σ2, τ2, υ2)g(ρ)

provided the integral exists in norm. So the bilinear form B(F,G) in F and G,
whose values are sesquilinear forms in f and g, can be written as the scalarly de-
fined integral

B(F,G)=
∫
F(σ1, τ1, υ1)G(σ2, τ2, υ2)a

+
σ1+τ1aτ1+υ1a

+
σ2+τ2aτ2+υ2λυ1+υ2 .

One obtains

Proposition 7.1.2

〈f |B(F,G)|g〉 = 〈O(F+)f |O(G)g〉
λ
.
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Proof Use the representation of unity from Sect. 5.6, and obtain

m=
∫

ω

〈
aπa

+
σ1+τ1aτ1+υ1a

+
ω

〉〈
aωa

+
σ2+τ2at2+υ2a

+
ρ

〉
λπ+υ1+υ2

=
∫

ω

〈
aωa

+
τ1+υ1

aτ1+σ1a
+
π

〉〈
aωa

+
σ2+τ2a2+υ2a

+
ρ

〉
λω+σ1+υ2 .

From there one obtains the result. �

Therefore a sufficient condition for the existence of 〈f |B(F,G)|g〉 is that
O(F+) and O(G) are bounded operators from Ks(X, k), provided with the
L2(X, k, λ)-norm, into L2(X, k, λ).

7.2 Meyer’s Formula

As might be guessed from Wick’s theorem, there exists an H such that B(F,G)=
B(H). In fact we have the following theorem, basically due to P.A. Meyer [34].

Theorem 7.2.1 (Meyer’s formula) If F,G are locally λ-integrable on X3, symmet-
ric in each variable, such that

B(F,G)=
∫
F(σ2, τ2, υ2)G(σ1, τ1, υ1)a

+
σ2+τ2aτ2+υ2a

+
σ1+τ1aτ1+υ1λυ1+υ2

exists, then there exists a locally λ-integrable function H on X3, symmetric in each
variable, such that

B(F,G)=B(H)

and H is given by the formula

H(σ, τ,υ)=
∑∫

κ

λκF (α1, α2 + β1 + β2, γ1 + γ2 + κ)

×G(κ + α2 + α3, β2 + β3 + γ2, γ3)

where the sum runs through all indices α1, . . . , γ3 with

α1 + α2 + α3 = σ,
β1 + β2 + β3 = τ,
γ1 + γ2 + γ3 = υ.

That is essentially Meyer’s formula [34, p. 92]. The difference is mainly, that his
formula is formulated for sets of coordinates, whereas our formula deals with sets
of indices of coordinates; in addition, our formula holds for any locally compact
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set and for any base measure λ; Meyer considers only X = R and the Lebesgue
measure. This formula was proven in [43] for Cc-functions. In order to generalize
it to more complicated functions one must use the extension theorems of measure
theory.

Proof We prove the theorem only for positive Cc-functions and leave the general-
ization to the reader. Recall from Sect. 5.3 that

ε(α,β)= 〈aα, a+β
〉=

∑

ϕ∈B(α,β)

∏

c∈α
ε
(
c,ϕ(c)

)
(∗)

where B(α,β) is the set of all bijections ϕ : α→ β . If #α �= #β , then B(α,β)= ∅
and ε(α,β)= 0.

One shows easily that

ε(α1 + α2, β) =
∑

β1+β2=β
ε(α1, β1)ε(α2, β2),

ε(α,β1 + β2) =
∑

α1+α2=α
ε(α1, β1)ε(α2, β2).

From there one concludes that

(∗) ε(α1 + α2, β1 + β2)=
∑
ε(α11, β11)ε(α12, β21)ε(α21, β12)ε(α22, β22)

where the sum runs through all indices α11, . . . , β22 with

α11 + α12 = α1, α21 + α22 = α2,

β11 + β12 = β1, β21 + β22 = β2.

We have

B(F,G)=
∫
λυ1+υ2F(σ2, τ2, τ1)G(σ1, τ1, υ1)a

+
σ2+τ2aτ2+υ2a

+
σ1+τ1aτ1+υ1 ,

where the integral runs over all (mutually disjoint) index sets σ1, . . . , υ2. Calculate

a+σ2+τ2aτ2+υ2a
+
σ1+τ1aτ1+υ1

=
∑
a+σ2+τ2+σ11+τ11

aτ21+υ21+τ1+υ1ε(τ22 + υ22, σ12 + τ12)

where the indices obey the conditions

τ21 + τ22 = τ2, υ21 + υ22 = υ2,

σ11 + σ12 = σ1, τ11 + τ12 = τ1.
Following (∗)

ε(τ22 + υ22, σ12 + τ12)=
∑
ε(τ221, σ121)ε(τ222, τ121)ε(υ221, σ122)ε(υ222, τ122)
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with

τ221 + τ222 = τ22, υ221 + υ222 = υ22,

σ121 + σ122 = σ12, τ121 + τ122 = τ12.

Using the sum-integral lemma

B(F,G) =
∫
λυ21+υ221+υ222+υ1F(σ2, τ21 + τ221 + τ222, υ21 + υ221 + υ222)

×G(σ11 + σ121 + σ122, τ11 + τ121 + τ122, υ1)ε(τ221, σ121)ε(τ222, τ121)

× ε(υ221, σ122)ε(υ222, τ122)a
+
σ2+τ21+τ221+τ222+σ11+τ11

× aτ21+υ21+τ11+τ121+τ122+υ1

where the integral runs over all indices. Put

σ2 = α1, σ121 = τ221 = α2, σ11 = α3,

τ21 = β1, τ222 = τ121 = β2, τ11 = β3,

υ21 = γ1, υ222 = τ122 = γ2, υ1 = γ3,

σ122 = υ221 = κ,
where the equalities in the second column hold after integration. Define

α1 + α2 + α3 = σ,
β1 + β2 + β3 = τ,
γ1 + γ2 + γ3 = υ,

and obtain the theorem using the sum-integral lemma again. �

7.3 Quantum Stochastic Processes of Class C 1: Definition
and Fundamental Properties

Recall the definition of functions of class C 1 from Definition 6.3.1, and use, instead
of the index sets α1, . . . , αk , the index sets σ, τ,υ; set B= B(k), where k is a Hilbert
space. Assume xt (σ, τ, υ) of class C 1, and use the notation

(
R1±x

)
t
(tσ , tτ , tυ)= xt±0

(
tσ + {t}, tτ , tυ

)
,

(
R0±x

)
t
(tσ , tτ , tυ)= xt±0

(
tσ , tτ + {t}, tυ

)
,

(
R−1± x

)
t
(tσ , tτ , tυ)= xt±0

(
tσ , tτ , tυ + {t}

)
,

(
Dix

)
t
= (Ri+x

)
t
− (Ri−x

)
t
.
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Note we are using 1,0,−1 as indices where a while before we used 1,2,3 analo-
gously. Recall, from Sect. 7.1, the definition of the measure

m(π,σ, τ,υ,ρ)= 〈aπa+σ+τ aτ+υa+ρ
〉
λπ+υ

and the sesquilinear form

〈f |B(F )|g〉 =
∫

m(π,σ, τ,υ,ρ)f+(π)F (σ, τ,υ)g(ρ).

Definition 7.3.1 If xt is of class C 1, we call B(xt ) a quantum stochastic process
of class C 1.

Theorem 7.3.1 If xt is of class C 1, then the Schwartz derivative of 〈f |B(xt )|g〉
for f,g ∈Ks(R, k) is a locally integrable function

∂〈f |B(xt )|g〉 = 〈f |B
(
∂cxt

)|g〉
+ 〈a(t)f ∣∣B(D1xt

)|g〉 + 〈a(t)f ∣∣B(D0xt
)∣∣a(t)g

〉

+ 〈f |B(D−1xt
)∣∣a(t)g

〉

and we have, for s < t ,

〈f |B(xt )|g〉 − 〈f |B(xs)|g〉 =
∫ t

s

dt ′∂〈f |B(xt ′)|g〉.

Using the notation of Sect. 2.4, we may write

∂B(xt )=B
(
∂cxt

)+ a†(t)B
(
D1xt

)+ a†(t)B
(
D0xt

)
a(t)+B

(
D−1xt

)
a(t).

Proof From Proposition 6.3.1 we have, with ϕ = 1]s,t[,

〈f |B(xt )|g〉 − 〈f |B(xs)|g〉
= 〈f |B(xt−0)|g〉 − 〈f |B(xs+0)|g〉

=
∫

mf+(π)∂c
t xt (σ, τ, υ)g(ρ)ϕ(t)dt

+
∫

mf+(π)
∑

c∈σ

(
D0x

)
c
xtc (σ \ c, τ, υ)g(ρ)ϕ(tc)

+
∫

mf+(π)
∑

c∈τ

(
D1x

)
c
xtc (σ, τ \ c,υ)g(ρ)ϕ(tc)

+
∫

mf+(π)
∑

c∈υ

(
D−1x

)
c
xtc (σ, τ, υ \ c)g(ρ)ϕ(tc).
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By using the sum-integral lemma, we obtain for the last three terms
∫ 〈
aπa

+
σ+c+τ aτ+υa+ρ

〉
λπ+υf+(π)

(
D1x

)
c
g(ρ)ϕ(c)

+
∫ 〈
aπa

+
σ+τ+caτ+c+υa+ρ

〉
λπ+υf+(π)

(
D0x

)
c
g(ρ)ϕ(c)

+
∫ 〈
aπa

+
σ+c+τ aτ+υ+ca+ρ

〉
λπ+υ+cf+(π)

(
D−1x

)
c
g(ρ)ϕ(c)

where the integration is over all indices π,σ, τ,υ,ρ, c. From there we deduce the
result. �

7.4 Ito’s Theorem

Recall Sect. 7.1, and consider the measure

m(π,σ1, τ1, υ1, σ2, τ2, υ2, ρ)=
〈
aπa

+
σ1+τ1aτ1+υ1a

+
σ2+τ2at2+υ2a

+
ρ

〉
λπ+υ1+υ2 .

Assume F,G :R3 → B(k) to be λ-measurable, and define

〈f |B(F,G)|g〉

=
∫

m(π,σ1, τ1, υ1, σ2, τ2, υ2, ρ)f
+(π)F (σ1, τ1, υ1)G(σ2, τ2, υ3)g(ρ)

provided the integral exists in norm.

Theorem 7.4.1 Assume xt , yt to be of class C 1, and that for f,g ∈Ks(R, k) the
sesquilinear forms 〈f |B(Ft ,Gt )|g〉 exist in norm, and t ∈ R �→ 〈f |B(Ft ,Gt )|g〉
is locally integrable, where Ft can be any function in {xt , ∂cxt ,R

1±xt ,R0±xt ,R−1± xt }
and Gt can be any function in {yt , ∂cyt ,R

1±yt ,R0±yt ,R−1± yt }.
Then 〈f |B(xt , yt )|g〉 is a continuous function, its Schwartz derivative is a locally

integrable function, and a formula for it is

∂〈f |B(xt , yt )|g〉 = 〈f |B
(
∂cxt , yt

)+B
(
f, ∂cyt

)+ I−1,+1,t |g〉
+ 〈a(t)f ∣∣B(D1xt , yt

)+B
(
f,D1yt

)+ I0,+1,t |g〉
+ 〈a(t)f ∣∣B(D0xt , yt

)+B
(
f,D0yt

)+ I0,0,t
∣∣a(t)g

〉

+ 〈f |B(D−1xt , yt
)+B

(
f,D−1yt

)+ I−1,0,t
∣∣a(t)g

〉

with

Ii,j,t =B
(
Ri+xt ,R

j
+yt
)−B

(
Ri−xt ,R

j
−yt
)
.
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So, for s < t ,

〈f |B(xt , yt )|g〉 − 〈f |B(xs, ys)|g〉 =
∫ t

s

ds′∂〈f |B(xs′ , ys′)|g〉.

Again using the notation a†, we may write

∂B(xt , yt )=
(
B
(
∂cxt , yt

)+B
(
f, ∂cyt

)+ I−1,+1,t
)

+ a†(t)
(
B
(
D1xt , yt

)+B
(
f,D1yt

)+ I0,+1,t
)

+ a†(t)
(
B
(
D0xt , yt

)+B
(
f,D0yt

)+ I0,0,t
)
a(t)

+ (B(D−1xt , yt
)+B

(
f,D−1yt

)+ I−1,0,t
)
a(t).

We start with a lemma.

Lemma 7.4.1 Assume xt be of class C 1, and define the function N on X3 by

N(σ, τ,υ)=
{

1 if {tσ+τ+υ}• has a repeated point,

0 otherwise.

Then the functions

xt±0(σ, τ,υ)
(
1−N(σ, τ,υ))

are everywhere defined Borel functions, and we consider
∫ 〈
aπaca

+
σ+τ aτ+υa+ρ

〉
f+(π)h(c)xtc+0(σ, τ,υ)

(
1−N(σ, τ,υ))g(ρ).

Understand this expression as a scalarly defined integral and obtain
∫
atca

+
σ+τ aτ+υλυxtc+0(σ, τ,υ)

(
1−N(σ, τ,υ))

=O(xtc )ac +O
((
R1+x

)
tc

)+O
((
R0+
)
tc

)
ac.

Proof The function

xt+0(σ, τ,υ)
(
1−N(σ, τ,υ))

= (1−N(σ, τ,υ))
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xt (σ, τ, υ) if tc /∈ tσ+τ+υ,
(R1+x)t (σ \ b, τ,υ) if t = tb, b ∈ σ,
(R0+x)t (σ, τ \ b,υ) if t = tb, b ∈ τ,
(R−1+ x)t (σ, τ, υ \ b) if t = tb, b ∈ υ

is defined everywhere. We calculate
∫
atca

+
σ+τ aτ+υλυxtc+0(σ, τ,υ)

(
1−N(σ, τ,υ))
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=
∫
xtc+0(σ, τ,υ)a

+
σ+τ aτ+υ+cλυ

(
1−N(σ, τ,υ))

+
∫
xtc+0(σ, τ,υ)

[
atc , a

+
σ+τ aτ+υ

]
λυ
(
1−N(σ, τ,υ)).

Because, in the first term on the right-hand side upon insertion of f,g,h all mea-
sures are λ-based, we may neglect N and replace tc + 0 by tc. The second term
equals, with the help of the sum-integral lemma and integrating over tb ,

∫ (∑

b∈σ
ε(c, b)a+σ\b+τ aτ+υλυ +

∑

b∈σ
ε(c, b)a+σ+τ\baτ+υλυ

)
xtc+0(σ, τ,υ)

× (1−N(σ, τ,υ))

=
∫
a+σ+τ aτ+υλυ

× (1−N(σ + c, τ, υ))(xtc+0(σ + c, τ, υ)
+ (1−N(σ, τ + c,υ))xtc+0(σ, τ + c,υ)ac

)
.

If we insert the functions f,g,h into the expressions, we see that we have to deal
with integrals over λ-based measures; we may neglect N . We use the expressions
R1+,R0+ introduced in Sect. 7.3, and arrive at

∫
atca

+
σ+τ aτ+υλυxtc+0(σ, τ,υ)

(
1−N(σ, τ,υ))

=
∫
a+σ+τ aτ+υλυ

(
acxtc (σ, τ, υ)+

(
R1+x

)
tc
(σ, τ, υ)+ ac

(
R0+
)
tc
(σ, τ, υ)

)

=O(xtc )ac +O
((
R1+x

)
tc

)+O
((
R0+
)
tc

)
ac. �

Proof of Ito’s Theorem By the formulae in Sect. 7.1, the sesquilinear form B(F,G)
vanishes if one of the functions F or G is a Lebesgue null function. So for fixed t

B(xt , yt )=B(xt±0, yt±0).

Define

N(σ, τ,υ)=
{

1 if {tσ+τ+υ}• has a repeated point,

0 otherwise.

As N is a Lebesgue null function, we have, for t0 < t1,

〈f |B(xt1 , yt1)|g〉 − 〈f |B(xt0, yt0)|g〉

=
∫

m(π,σ1, τ1, υ1, σ2, τ2, υ2,π)f
+(π)

(
1−N(σ1, τ1, υ1)

)
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× (xt1−0(σ1, τ1, υ1)yt1−0(σ2, τ2, υ2)− xt0+0(σ1, τ1, υ1)yt0+0(σ2, τ2, υ2)
)

× (1−N(σ2, τ2, υ2)
)
g(ρ).

We consider the set

(tσ1+τ1+υ1 ∪ tσ2+τ2+υ2)∩ ]t0, t1[ =
{
t1 < · · ·< tn−1},

and put t0 = t0 and t1 = tn to obtain
(
xt1−0(σ1, τ1, υ1)yt1−0(σ2, τ2, υ2)− xt0+0(σ1, τ1, υ1)yt0+0(σ2, τ2, υ2)

)

× (1−N(σ1, τ1, υ1)
)(

1−N(σ2, τ2, υ2)
)

=
n∑

i=1

∫ t i

t i−1
dt
(
∂cxt (σ1, τ1, υ1)yt (σ2, t2, υ2)+ xt (σ1, τ1, υ1)∂

cyt (σ2, t2, υ2)
)

× (1−N(σ1, τ1, υ1)
)(

1−N(σ2, τ2, υ2)
)

+
n−1∑

i=1

(
xti+0(σ1, τ1, υ1)yti+0(σ2, τ2, υ2)− xti−0(σ1, τ1, υ1)yti−0(σ2, τ2, υ2)

)

× (1−N(σ1, τ1, υ1)
)(

1−N(σ2, τ2, υ2)
)
.

The first sum equals

∫ t1

t0

dt
(
∂cxt (σ1, τ1, υ1)yt (σ2, t2, υ2)+ xt (σ1, τ1, υ1)∂

cyt (σ2, t2, υ2)
)
.

Remark that the points of each of tσ1+τ1+υ1 and tσ2+τ2+υ2 are all different, but there
may be points common to both. The second sum equals

∑

c∈σ1+τ1+υ1, tc∈]t0,t1[

(
xtc+0(σ1, τ1, υ1)− xtc−0(σ1, τ1, υ1)

)
ytc−0(σ2, τ2, υ2)

× (1−N(σ1, τ1, υ1)
)(

1−N(σ2, τ2, υ2)
)

+
∑

c∈σ2+τ2+υ2, tc∈]t0,t1[
(xtc−0(σ1, τ1, υ1)

(
ytc+0(σ2, τ2, υ1)− ytc−0(σ2, τ2, υ2)

)

× (1−N(σ1, τ1, υ1)
)(

1−N(σ2, τ2, υ2)
)

as, for example,

xtc+0(σ1, τ1, υ1)− xtc−0(σ1, τ1, υ1)= 0

for tc /∈ tσ1+τ1+υ1 . We discuss the integrals of the terms of the form

∑

c∈σi+τi+υi , tc∈]t0,t1[
xtc±0(σ1, τ1, υ1)

(
1−N(σ1, τ1, υ1)

)
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× ytc±0(σ2, τ2, υ2)
(
1−N(σ2, τ2, υ2)

)

and assume at first, that f,g, xt , yt are ≥ 0 , then define

ϕ(t)= 1
{
t ∈ ]t0, t1[

}

and consider
∫
f (π)

∑

c∈σ1+τ1+υ1

xtc+0(σ1, τ1, υ1)
(
1−N(σ1, τ1, υ1)

)

× ytc+0(σ2, τ2, υ2)
(
1−N(σ2, τ2, υ2)

)
g(ρ)ϕ(tc)

×m(π,σ1, τ1, υ1, σ2, τ2, υ2, ρ)

= I + II + III.

We split up the sum into three parts
∑

c∈σ1+τ1+υ1

=
∑

c∈σ1

+
∑

c∈τ1
+
∑

c∈υ1

.

We have, using the sum-integral lemma,

I =
∫
f (π)

∑

c∈σ1

(
R1+x

)
tc
(σ1 \ c, τ1, υ1)

(
1−N(σ1, τ1, υ1)

)

× ytc+0(σ2, τ2, υ2)
(
1−N(σ2, τ2, υ2)

)
g(ρ)ϕ(tc)

×m(π,σ1, τ1, υ1, σ2, τ2, υ2, ρ)

=
∫
f (π)

(
R1+x

)
tc
(σ1, τ1, υ1)

(
1−N(σ1 + c, τ1, υ1)

)

× ytc+0(σ2, τ2, υ2)
(
1−N(σ2, τ2, υ2)

)
g(ρ)ϕ(tc)

× 〈aπa+σ1+c+τ1aτ1+υ1a
+
σ2+τ2aτ2+υ2a

+
ρ

〉
λπ+υ1+υ2

=
∫

dtϕ(t)
〈
a(t)f

∣∣B
(
R1+xt , yt

)|g〉

=
∫ t1

t0

dt
〈
a(t)f

∣∣B
(
R1+xt , yt

)|g〉.

The integral over N(σ1 + c, τ1, υ1) and N(σ2, τ2, υ2) vanishes, and yt+0 = yt a.e.
with respect to the integrating measure.

In the same way

II =
∫
f (π)

(
R0+x

)
tc
(σ1, τ1, υ1)

(
1−N(σ1, τ1 + c,υ1)

)

× ytc+0(σ2, τ2, υ2)
(
1−N(σ2, τ2, υ2)

)
g(ρ)ϕ(tc)
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× 〈aπa+σ1+τ1+caτ1+c+υ1a
+
σ2+τ2aτ2+υ2a

+
ρ

〉
λπ+υ1+υ2 .

Using the representation of unity from Sect. 5.5, we obtain

II =
∫
f (π)

(
R0+x

)
tc
(σ1, τ1, υ1)

(
1−N(σ1, τ1 + c,υ1)

)

× ytc+0(σ2, τ2, υ2)
(
1−N(σ2, τ2, υ2)

)
g(ρ)ϕ(tc)

×
∫

ω

〈
aπa

+
σ1+τ1+caτ1+υ1a

+
ω

〉〈
aωaca

+
σ2+τ2aτ2+υ2a

+
ρ

〉
λπ+υ1+υ2 .

Now, by the proof of Theorem 7.3.1,
∫
f (π)

(
R0+x

)
tc
(σ1, τ1, υ1)

(
1−N(σ1, τ1 + c,υ1)

)〈
aπa

+
σ1+τ1+caτ1+υ1a

+
ω

〉
λπ+υ1

= (O((R0+x
)
tc

)+
atcf

)+
(ω)λω,

and by the last lemma
∫
ytc+0(σ2, τ2, υ2)

(
1−N(σ2, τ2, υ2)

)
g(ρ)

〈
aωaca

+
σ2+τ2aτ2+υ2a

+
ρ

〉
λυ2

= 〈aωaca+σ2+τ2aτ2+υ2a
+
ρ

〉
λπ+υ1+υ2g(ω)

= ((O(ytc )ac +O
((
R1+y

)
tc

)+O
((
R0+y

)
tc
ac
))
g
)
(ω),

where N(σ1, τ1 + c,υ1) and N(σ2, τ2, υ2) can be safely neglected. So finally

II =
∫

dtcϕ(tc)
〈(
O
((
R0+x

)
tc

)+
atcf

)∣∣(O(xtc )ac +O
((
R1+x

)
tc

)+O
((
R0+
)
tc
ac
))
g
〉
λ

=
∫

dtϕ(t)
(〈atf |B

(
R0+x

)
t
, yt
)∣∣a(t)g

〉+ 〈atf |B
(
R0+xt ,R1+yt

)|g〉

+ 〈atf |B
(
R0+xt ,R0+yt |atg〉

)
.

We calculate

III =
∫
f (π)

(
R−1+ x

)
tc
(σ1, τ1, υ1)

(
1−N(σ1, τ1, υ1 + c)

)

× ytc+0(σ2, τ2, υ2)
(
1−N(σ2, τ2, υ2)

)
g(ρ)ϕ(tc)

× 〈aπa+σ1+τ1aτ1+υ1+ca
+
σ2+τ2aτ2+υ2a

+
ρ

〉
λπ+υ1+c+υ2

=
∫
f (π)

(
R−1+ x

)
tc
(σ1, τ1, υ1)

(
1−N(σ1, τ1, υ1 + c)

)

× ytc+0(σ2, τ2, υ2)
(
1−N(σ2, τ2, υ2)

)
g(ρ)ϕ(tc)

×
∫

ω

〈
aπa

+
σ1+τ1aτ1+υ1a

+
ω

〉〈
aωaca

+
σ2+τ2aτ2+υ2a

+
ρ

〉
λπ+υ1+c+υ2 .
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By calculations similar to those for II one obtains

III =
∫

dϕ(t)
(〈f |B(R−1+ xt , yt

)∣∣a(t)g
〉+ 〈f |B(R−1+ xt ,R1+yt

)|g〉

+ 〈f |B(R−1+ xt ,R0+yt
)∣∣a(t)g

〉)
.

The assumptions of our theorem guarantee that all the expressions exist and we
may extend the formulas to vector- and operator-valued functions. By analogous
calculations,

∫
f (π)+

∑

c∈σ1+τ1+υ1

xtc±0(σ1, τ1, υ1)
(
1−N(σ1, τ1, υ1)

)

× ytc+0(σ2, τ2, υ2)
(
1−N(σ2, τ2, υ2)

)
g(ρ)ϕ(tc)

×m(π,σ1, τ1, υ1, σ2, τ2, υ2, ρ)

=
∫ t1

t0

dtK±,+(t)

and
∫
f (π)+

∑

c∈σ2+τ2+υ2

xtc−0(σ1, τ1, υ1)
(
1−N(σ1, τ1, υ1)

)

× ytc±0(σ2, τ2, υ2)
(
1−N(σ2, τ2, υ2)g(ρ)ϕ(tc)

)

×m(π,σ1, τ1, υ1, σ2, τ2, υ2, ρ)

=
∫

dtϕ(t)K−,±(t)

=
∫ t1

t0

dtK−,±(t).

We have

K±,+ =K(1)±,+ +K(2)±,+,
K−,± =K(1)−,± +K(2)−,±

with

K
(1)
±,+ =

〈
a(t)f

∣∣B
(
R1±xt , yt

)|g〉 + 〈a(t)f ∣∣B(R0±xt , yt
)∣∣a(t)g

〉

+ 〈f |B(R−1± xt , yt
)∣∣a(t)g

〉
,

K
(1)
−,± =

〈
a(t)f

∣
∣B
(
xt ,R

1±yt
)|g〉 + 〈a(t)f ∣∣B(xt ,R0+yt

)∣∣a(t)g
〉

+ 〈f |B(xt ,R−1+ yt
)∣∣a(t)g

〉
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and

K
(2)
±,± =

〈
a(t)f

∣∣B
(
R0±xt ,R1±yt

)|g〉 + 〈a(t)f ∣∣B(R0±xt ,R0±yt
)∣∣a(t)g

〉

+ 〈f |B(R−1± xt ,R0±yt
)∣∣a(t)g

〉+ 〈f |B(R−1± xt ,R1±yt
)|g〉.

From there one achieves the final result without great difficulty. �



Chapter 8
The Hudson-Parthasarathy Differential
Equation

Abstract The Hudson-Parthasarathy quantum stochastic differential equation can
be solved by a classical integral in a high-dimensional space. With the help of an
a priori estimate it is possible to show that the solution is unitary, under the usual
assumptions. The unitarity allows stronger estimates: the Γk-norm is of polynomial
growth. This provides the resolvent of the associated one-parameter group with the
properties needed for the discussion of the Hamiltonian. An explicit form of the
Hamiltonian can be established.

8.1 Formulation of the Equation

We shall investigate the quantum stochastic differential equation that reads in the
Hudson-Parthasarathy calculus [34, 36]

dtU
t
s =A1dB+t U ts +A0dΛtU

t
s +A−1dBtU

t
s +BUtsdt, with Uss = 1,

where A1,A0,A−1,B are operators in B(k). In his white noise calculus Accardi [3]
formulates it as a normal ordered equation

dUts
dt

=A1a
+
t U

t
s +A0a

+
t U

t
s at +A−1U

t
s at +BUts .

Our formulation is very similar to Accardi’s. We interpret Uts as a sesquilinear
form over Ks(R) given by the classical integrals

〈f |Uts |g〉 =
∫
f+(π)uts(σ, τ, υ)g(")

〈
aπa

+
σ+τ aτ+υa+"

〉
λπ+υ

where uts is locally integrable in all five variables s, t, σ, τ, υ . We formulate the
differential equation in the weak sense as

d

dt
〈f |Uts |g〉 = 〈atf |A1U

t
s |g〉 + 〈atf |A0U

t
s |atg〉 + 〈f |A−1U

t
s |atg〉 + 〈f |BUts |g〉,

Uss = 1
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or, using the operator a† and interpreting the bracket as a weak integral,

dUts
dt

= a†(t)A1U
t
s + a†(t)A0U

t
s a(t)+A−1U

t
s a(t)+BUts ,

which is still more similar to Accardi’s formulation. We can write the differential
equation better as the integral equation

〈f |Uts |g〉 = 〈f |g〉 +
∫ t

s

dr〈arf |A1U
r
s |g〉 +

∫ t

s

dr〈arf |A0U
r
s |arg〉

+
∫ t

s

dr〈f |A−1U
r
s |arg〉 +

∫ t

s

dr〈f |BUrs |g〉 (∗)

for t ≥ s. We shall show that this equation has a unique solution, which can be given
explicitly.

8.2 Existence and Uniqueness of the Solution

Lemma 8.2.1 The equation (∗) is equivalent to the circled integral equation (∗∗)

uts = e+A1

∮ 1

s,t

u·s +A0

∮ 0

s,t

u·s +A−1

∮ −1

s,t

u·s +B
∫ t

s

dr urs (∗∗)

where

e(σ, τ,υ)=
{

1 if σ + τ + υ = ∅,
0 otherwise.

Proof Consider, for example, the term

∫ t

s

dr 〈arf |A0U
r
s |arg〉

=
∫

1[s,t](tc)f+(ω+ σ + τ + c)A0 u
tc
s (σ, τ, υ)g(ω+ τ + υ + c)λω+σ+τ+υ+c

=
∫ ∑

c∈τ
1[s,t](tc)f+(ω+ σ + τ)A0 u

tc
s (σ, τ \ c,υ)g(ω+ τ + υ)λω+σ+τ+υ

=
∫
f+(ω+ σ + τ)A0

(∮ 0

s,t

u·s
)
(σ, τ,υ)g(ω+ τ + υ)λω+σ+τ+υ.

Remark that the function uts(σ, τ, υ) is determined by the sesquilinear form
〈f |Uts |g〉 Lebesgue almost everywhere. �

Applying Theorem 6.2.1, we obtain immediately
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Theorem 8.2.1 Equation (∗) has a unique solution, namely

Uts =B
(
uts(A1,A0,A−1;B)

)
.

We recall the definition of uts :

uts(σ, τ, υ)

= (−i)neB(t−sn)AineB(sn−sn−1)Ain−1

· · ·Ai2eB(s2−s1)Ai1eB(s1−s)1
{
tσ+τ+υ ⊂ ]s, t[

}

if tσ+τ+υ is without a repeated point and

tσ+τ+υ = {s < s1 < s2 < · · ·< sn−1 < sn < t},

where the Aij are numbered accordingly.
If Oa is the operator inducing the normal ordering of a and a+, one may write

Uts = 1+
∞∑

n=1

(−i)n
∫
· · ·
∫

s<s1<s2<···<sn<t

Oa

(
eB(t−sn)

(
A1a

+(dsn)+A0a
+(dsn)a(sn)+A−1a(sn)dsn

)
eB(sn−sn−1)

· · · eB(s2−s1)(A1a
+(ds1)+A0a

+(ds1)a(s1)+A−1a(s1)ds1
))

eB(s1−s)
)
.

Using the notation a+(dt)= a†(t)dt , the last equation becomes

Uts = 1+
∞∑

n=1

(−i)n
∫
· · ·
∫

s<s1<s2<···<sn<t
ds1 · · ·dsn

Oa

(
eB(t−sn)

(
A1a

†(sn)+A0a
†(sn)a(sn)+A−1a(sn)

)
eB(sn−sn−1)

· · · eB(s2−s1)(A1a
†(s1)+A0a

†(s1)a(s1)+A−1a(s1)
)
eB(s1−s)

)
.

8.3 Examples

8.3.1 A Two-Level Atom in a Heatbath of Oscillators

We discuss the four examples introduced in Chap. 4.
We consider the equation

(d/dt)U ts =−i
√

2πa†(t)E−+Uts − i
√

2πE+−Uts a(t)− πE++Uts ,
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where the four E±± are the 2× 2-matrix units. Then

Uts = e−πE++(t−s) +
∞∑

n=1

(−√2π i)n
∫
· · ·
∫

s<s1<s2<···<sn<t
ds1 · · ·dsn

Oa

(
e−πE++(t−sn)

(
E−+a†(sn)+E+−a(sn)

)
e−πE++(sn−sn−1)

· · · e−πE++(s2−s1)(E−+a†(s1)+E+−a(s1)
)
e−πE++(s1−s)

)
.

Use the notation |+〉 = (10
)

and |−〉 = (01
)
. Then we calculate

Uts |+〉 ⊗ |∅〉 = e−π(t−s)|+〉 ⊗ |∅〉 − i
√

2π
∫ t

s

ds1|−〉 ⊗ a†(s1)|∅〉e−π(s1−s)

since

(
E−+a†(s1)+E+−a(s1)

)(|+〉 ⊗ |∅〉)= |−〉⊗ a†(s1)|∅〉,
Oa

(
E−+a†(s2)+E+−a(s2)

)(
E−+a†(s1)+E+−a(s1)

)|+〉 ⊗ |∅〉 = 0.

Also

Uts
(|−〉 ⊗ a†(s)|∅〉)= (|−〉 ⊗ a†(s)|∅〉)− i

√
2π
∫ t

s

ds1e−π(t−s1)|+〉 ⊗ |∅〉

− 2π
∫∫

s<s1<s2<t

ds1ds2e−π(s2−s1)δ(s − s1)|−〉 ⊗ a†(s2)|∅〉

since

(
E−+a†(s1)+E+−a(s1)

)(|−〉 ⊗ a†(s)|∅〉)= δ(s1 − s)
(|+〉 ⊗ |∅〉),

Oa

(
E−+a†(s2)+E+−a(s2)

)(
E−+a†(s1)+E+−a(s1)

)(|−〉 ⊗ a†(s)|∅〉)

= δ(s − s1)|−〉 ⊗ a†(s2)|∅〉.
The terms of third and higher orders vanish. So the subspace spanned by |+〉 ⊗ |∅〉
and |−〉⊗a†(s)|∅〉, s ∈R, stays invariant, and the restriction of Ut0 to this subspace
coincides with the matrix V (t) in the formal time representation (see Sect. 4.2.4),
as

V (t)=
(
V00 V01
V10 V11

)

and

V00(t)= e−πt ,
(
V01(t)|τ

)=−i(2π)1/2
∫ t

0
dt1e−π(t−t1)δ(τ − t1),
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(
τ |V10(t)

)=−i(2π)1/2
∫ t

0
dt1δ(t1 − τ)e−πt1 ,

(τ2|V11(t)|τ1)= δ(τ1 − τ2)− 2π
∫∫

0<t1<t2<t
dt1dt2δ(τ2 − t2)e−π(t2−t1)δ(t1 − τ1).

8.3.2 A Two-Level Atom Interacting with Polarized Radiation

We work with the space

X = L2(
R× S

2 × {1,2,3})

provided with the measure

〈λ|f 〉 =
∫∫

dt ω2
0dn

∑

i=1,2,3

f (t,n, i),

where dn is the surface element on the unit sphere such that
∫

S2
dn= 4π

and ω0 is the transition frequency. Use the notation again

X= {∅} +X+X2 + · · ·
and consider

Γ = L2(
X,C3).

Recall the vector

v(n)=Π(n)q,
where Π(n) is the projector on the plane perpendicular to n,

Π(n)ij = δij − ninj

and q is a fixed vector given by physics.
One finds

γ =
∫
ω2

0dn
∣∣v(n)

∣∣2 = 8π

3
|q|2.

We have the annihilation operators a(t,n, i) and the creation operators
a+(d(t,n, i)). Define the vectors

a(t,n)= (a(t,n, i))
i=1,2,3, a+

(
d(t,n)

)= (a(d(t,n, i)))
i=1,2,3.
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Consider the quantum stochastic differential equation

dtU
t
s =−i

√
2π
∫

S2

〈
v(n),a+

(
d(n, t)

)〉
E01U

t
s

− i
√

2πE10U
t
sdt
∫

S2
ω2

0dn
〈
a(t,n),v(n)

〉− πγE11U
t
sdt.

We use the notation

K(dt)=
∫

S2

〈
v(n),a+

(
d(n, t)

)〉
E01 +

∫

S2
E10dtω2

0dn
〈
a(t,n),v(n)

〉

then we assume without proof, that the solution is analogous to the series of Theo-
rem 8.2.1

Uts = 1+
∞∑

n=1

(−i
√

2π)n
∫
· · ·
∫

s<s1<···<sn<t

Oae−πγ (t−sn)K(dsn) · · · e−iπγ (s2−s1)K(dt1)e−πγ (s1−s).

By a similar calculation to that in Sect. 8.3.1 we obtain that the subspace spanned

by
(1

0

)⊗ |∅〉 and
(0

1

)⊗ a+(d(t,n, i))|∅〉 stays invariant and that the restriction of Ut0
to that subspace equals V (t) in the formal time representation in Sect. 4.2.3.

8.3.3 The Heisenberg Equation of the Amplified Oscillator

This is formally very similar to the first example in Sect. 8.3.1. We have the stochas-
tic differential equation

d

dt
U ts = i

√
2πa†(t)E−+Uts − i

√
2πE+−Uts a(t)+ πE++Uts .

The subspace spanned by |+〉⊗ |∅〉 and by the |−〉⊗ a+(ds)|∅〉 stays invariant, and
the restriction of Ut0 coincides with the matrix V (t) in Sect. 4.4.2. But the analytical
character is very different, as was pointed out there.

8.3.4 A Pure Number Process

The differential equation is of the form

dtU
t
s = ca+(dt)U ts a(t).
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It can be solved by the infinite series of Theorem 4.2.1. The number operator∫
a+(dt)a(t) is an invariant. If we restrict to the one-particle space, we obtain

〈∅|a(s2)Uts a†(s1)|∅〉 = δ(s1 − s2)+ c
∫ t

s

dt1δ(s1 − t1)δ(t1 − s2)

= (1+ c1[s,t](s1)
)
δ(s1 − s2)

in agreement with the formula for V (t) in Sect. 4.5 with

c= −i2π

1+ iπ
.

8.4 A Priori Estimate and Continuity at the Origin

Definition 8.4.1 We define the Fock space

Γ = L2
s

(
R, k, e(λ)

)

of all symmetric square-integrable functions with respect to Lebesgue measure from
R to k. If f is a measurable function on R define the operator N by (Nf )(w) =
(#w)f (w), and define Γk as the space of those measurable symmetric functions
from R to k for which

∫
Δ(w)

〈
f (w)|(N + 1)k f (w)

〉
dw <∞.

We denote by ‖.‖Γk the corresponding norm. We write for short

K =Ks(R, k)

for the space of all symmetric continuous functions from R to k with compact sup-
port. Call K (n), resp. Γ (n), the subspaces where f (w)= 0 for #w > n.

We extend the notions of a and a+. We define a(ϕλ)f = a(ϕ)f and a+(ϕ)f for
ϕ ∈ L2(R) and f ∈ Γ (n). We have the well known relations

a(ϕ) : Γ (n)→ Γ (n−1),
∥∥a(ϕ)f

∥∥
Γ
≤√n‖ϕ‖L2‖f ‖Γ ,

a(ϕ)+ : Γ (n)→ Γ (n+1),
∥∥a(ϕ)+f

∥∥
Γ
≤√n+ 1‖ϕ‖L2‖f ‖Γ .

One sees easily

Lemma 8.4.1 We have for ϕ ∈ L2(R) the equations
∫
a+(σ )e(ϕ)(σ )= exp

(∫
a+(dt)ϕ(t)

)
,
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∫
λυa(υ)e(ϕ)(υ)= exp

(∫
dt a(t)ϕ(t)

)
,

∫
a+(τ )a(τ )e(ϕ)(τ )=Oa exp

(∫
a+(dt)a(t)ϕ(t)

)
,

with

e(ϕ)(t1, . . . , tn)= ϕ(t1) · · ·ϕ(tn)
as usual.

Lemma 8.4.2 Assume we are given a Lebesgue measurable function f : R→ k,
then

∫
λξ+ω1{#ξ = k}∥∥f (ξ +ω)∥∥2 = 〈f |

(
N

k

)
|f 〉.

Proof The left-hand side of the last equation equals

∫
λω
∑

ξ⊂ω

∥∥f (ω)
∥∥21{#ξ = k} =

∫
λω

(
#ω

k

)∥∥f (ω)
∥∥2
,

after a change of variable and using the sum-integral lemma, and the resulting right-
hand side is what was needed. �

Lemma 8.4.3 If

f = exp

(∫
a+(dt)ϕ(t)

)
g,

then

〈f |
(
N

k

)
|f 〉 ≤

∑

k1≤k
e4‖ϕ‖2〈g|2N

(
N

k1

)
|g〉.

Proof We assume f ≥ 0 and g ≥ 0. One obtains

f (σ )=
∑

σ1+σ2

e
(
ϕ(σ1)

)
g(σ2)

and
∫
λξ+ω1{#ξ = k}∥∥f (ξ +ω)∥∥2

=
∫
λξ+ω1{#ξ = k}

( ∑

ω1+ω2=ω
ξ1+ξ2=ξ

e(ϕ)(ξ1 +ω1)g(ξ2 +ω2)

)2

.
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Using Cauchy-Schwarz inequality

≤ 2k
∫

2#ωλξ+ω1{#ξ = k}
∑

ω1+ω2=ω
ξ1+ξ2=ξ

e
(
ϕ2)(ξ1 +ω1)g(ξ2 +ω2)

2

=
∑

k1+k2=k

∫
λξ1+ξ2+ω1+ω2 1{#ξ1 = k1}1{#ξ2 = k2}

2k1e
(
ϕ2)(ξ1)2#ω1e

(
ϕ2)(ω1)2

k2+#ω2g(ξ2 +ω2)
2

≤
∑

k1≤k
e4‖ϕ‖2〈g|2N

(
N

k1

)
|g〉

as
∫
λξ11{#ξ1 = k1}2k1 e

(
ϕ2)(ξ1)= 1

k1!2
k1‖ϕ‖2k1 < e2‖ϕ‖2

and
∫
λω12#ω1e

(
ϕ2)(ω1)= e2‖ϕ‖2

and
∫
λξ2+ω21{ξ2 = k2}2#(ξ2+ω2)g(ξ2 +ω2)

2 = 〈g|2N
(
N

k1

)
|g〉

by the same reasoning as in the proof of the preceding lemma. �

Proposition 8.4.1 Assume

Uts =O
(
uts(A1,A0,A−1;B)

)
.

Then there exist constants Cn,k(t − s) such that, for f ∈K (n),
∥∥Uts f

∥∥
Γk
≤ Cn,k(t − s)‖f ‖Γ .

Furthermore, for t ↓ s and f ∈K ,
∥∥Uts f − f

∥∥
Γk
→ 0.

Proof Define

C =max
(‖Ai‖, i = 1,0,−1,‖B‖);

then
∥∥uts(σ, τ, υ)

∥∥≤ eC(t−s)C#σ+#τ+#υ1
{
tσ+τ+υ ⊂ [s, t]

}= eC(t−s)e(χ)(σ + τ + υ)
with χ(r)= C1[s,t](r) and e(χ)(ω)=∏c∈ω χ(tc).
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We have using Proposition 7.1.1

∥∥O
(
uts
)
f (ω)

∥∥

≤
∑

σ⊂ω

∑

τ⊂ω\σ

∫
λυeC(t−s)e(χ)(σ + τ + υ)∥∥f (ω \ σ + υ)∥∥

= eC(t−s)
(
Rts S

t
s T

t
s ‖f ‖

)
(ω).

For g ∈K (n)(R,R), g ≥ 0 we have

∫
λυ
(
aυe(χ)(υ)g

)
(ω)= (T ts g

)
(ω)=

∫
λυe(χ)(υ)g(ω+ υ)= (exp

(
a(χ)

)
g
)
(ω).

As T ts :K (n)→K (n), we may estimate the Γk-norm by the Γ -norm. We have

∥∥T ts g
∥∥≤

n∑

l=0

(1/l!)√n(n− 1) · · · (n− l + 1)Cl(t − s)l/2‖g‖Γ

as

‖χ‖L2 = C√t − s.
Furthermore we have

Sts :K (n)→K (n),
∫ (
a+τ aτ g

)
(ω)= (Stsg

)
(ω)=

∑

τ⊂ω
e(χ)(τ )g(ω)= e(1+ χ)(ω)g(ω)

and
∥∥Sst g

∥∥
Γ
≤ (1+C)n‖g‖Γ .

Again

Rts :K (n)→ Γ k

∫ (
a+σ e(g)

)
(ω)= (Rst g

)
(ω)=

∑

σ⊂ω
e(χ)(σ )g(ω \ σ)= exp

(
a+(χ)g

)
(ω).

Use the inequality of the last lemma and obtain the first assertion.
We investigate the second assertion. As

(
O
(
uts
)
f − f )(ω)=

∑

σ⊂ω

∑

τ⊂ω\σ

∫
λυu

t
s(σ, τ, υ)1{σ + τ + υ �= ∅}f (ω \ σ + υ)
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we may estimate the norm by

∑

σ⊂ω

∑

τ⊂ω\σ

∫
λυ exp

(
C(t − s))e(χ)(σ + τ + υ)∥∥f (ω \ σ + υ)∥∥1{σ + τ + υ �= ∅}

= exp
(
C(t − s))((RtsStsT ts − 1

)‖f ‖)(ω).
We have

∥∥T ts g − g
∥∥
Γ
≤

n∑

l=1

(1/l!)√n(n− 1) · · · (n− l + 1)Cl(t − s)l/2‖g‖Γ =O(
√
t − s),

and

((
Sts − 1

)
g
)
(ω)= (e(1+ χ)(ω)− 1

)
g(ω)

=
∑

c∈ω
χ(c)e(1+ χ)(ω \ c)g(ω)≤

∑

c∈ω
χ(c)(1+C)n−1g(ω).

Since f ∈K n, there exists a compact intervalK ⊂R, [s, t] ⊂K , such that g(ω)≤
e(1K)(ω) for #ω ≤ n, if g(ω)≤ 1 for all ω. We have

∑

c∈ω
χ(c)(1+C)n−1g(ω)≤

∑

c∈ω
χ(c)(1+C)ne(1K)(ω \ c).

The norm is bounded above by

√
n+ 1

√
t − s(1+C)n exp

(|K|/2).
We have

((
Rts − 1

)
g
)
(ω)=

∑

σ⊂ω,σ �=∅
e(χ)(σ )g(ω \ σ).

Hence

〈
Rtsg − g

∣∣
(
N

k

)∣∣Rtsg− g
〉

=
∫
λξ+ω1{#ξ = k}(Rtsg− g

)2
(ξ +ω)

=
∫
λξ+ω1{#ξ = k}

( ∑

ω1+ω2=ω
ξ1+ξ2=ξ
ω1+ξ1 �=∅

e(χ)(ξ1 +ω1)g(ξ2 +ω2)

)2

≤
∑

k1+k2=k

∫

ξ1+ω1 �=∅
λξ1+ξ2+ω1+ω21{#ξ1 = k1}1{#ξ2 = k2}
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× 2k1e
(
χ2)(ξ1)2#ω1e

(
χ2)(ω1)2

k2+#ω2g(ξ2 +ω2)
2

≤
∑

k1≤k

(
e4‖χ‖2 − 1

)〈g|2N
(
N

k1

)
|g〉 =O(t − s)

because
∫

ξ1+ω1 �=∅
λξ1+ω11{#ξ1 = k1}2#(ξ1+ω1)e

(
χ2)(ξ1 +ω1)≤ e4‖χ‖2 − 1.

From these results one obtains the second assertion of the proposition easily. �

8.5 Consecutive Intervals in Time

We start with a lemma.

Lemma 8.5.1 Assume s < r < t . Multiply the measure

m= 〈aπa+σ2+τ2aτ2+υ2a
+
σ1+τ1aτ1+υ1a

+
"

〉
λπ+υ1+υ2

by the Borel function

F = 1
{
tσ1+τ1+υ1 ⊂ [s, r]

}
1
{
tσ2+τ2+υ2 ⊂ [r, t]

}
.

Then

Fm= F 〈aπa+σ2+τ2+σ1+τ1aτ2+υ2+τ1+υ1a
+
"

〉
λπ+υ1+υ2 .

Proof Integrate against a C∞c -function f , considering the integral
∫
f (π,σ1, . . . , υ2, ")Fm.

Take c ∈ τ2 + υ2, e.g., c ∈ υ2, then

aτ2+υ2a
+
σ1+τ1 = aτ2+υ2\ca

+
σ1+τ1ac +

∑

b∈σ2+τ2
ε(c, b)aτ2+υ2\ca

+
(σ1+τ1)\c.

But
∫
f+(π, . . . , ")ε(c, b)

〈
aπa

+
σ2+τ2aτ2+υ2\ca

+
(σ1+τ1)\baτ1+υ1a

+
"

〉
λπ+υ1+υ2 = 0

as
∫
λcε(c, b)1{r < tc < t}1{s < tb < r} =

∫
λc1{r < tc < t}1{s < tc < r} = 0.

One proves the lemma by induction. �
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Lemma 8.5.2 Assume

t0 < t1 < · · ·< tn
and multiply the measure

m= 〈aπa+σn+τN aτn+υn · · ·a+σ1+τ1aτ1+υ1a
+
"

〉
λπ+υ1+···+υn

by the Borel function

F = 1
{
tσ1+τ1+υ1 ⊂ [t0, t1]

} · · ·1{tσn+τn+υn ⊂ [tn−1, tn]
}
.

Then

Fm= F 〈aπa+σn+τn+···+σ1+τ1aτn+υn+···+τ1+υ1a
+
"

〉
λπ+υ1+···+υn .

For the proof use the duality theorem in Sect. 5.6.
We consider again uts(A1,A0,A−1;B). We have shown, in Sect. 8.4, that the

map O(uts) : K (n)→ Γ is bounded. So B(utr , u
r
s ) exists (see Sect. 7.1).

Proposition 8.5.1 For s < r < t we have

B
(
utr , u

r
s

)=B
(
uts
)
.

Proof We have

〈f |B(utr , urs
)|g〉 =

∫
f+(π)utr (σ2, τ2, υ2)u

r
t (σ1, τ1, υ1)g(")

〈
aπa

+
σ2+τ2at2+υ2a

+
σ1+τ1aτ1+υ1a

+
"

〉
λπ+υ1+υ2 .

As, e.g., utr (σ2, τ2, υ2) vanishes if tσ2+τ2+υ2 �⊂ [r, t], we may apply Lemma 8.5.1
and we obtain

〈f |B(utr , urs
)|g〉 =

∫
f+(π)utr (σ2, τ2, υ2)u

r
t (σ1, τ1, υ1)g(")m

′

with

m
′ = 〈aπa+σ2+τ2a

+
σ1+τ1aτ2+υ2aτ1+υ1a

+
"

〉
λπ+υ1+υ2 .

If {r, s, t, tσ+τ+τ }• is without multiple points, then we showed in Remark 6.2.1 that

uts(σ, τ, υ)= utr (σ2, τ2, υ2)u
r
s (σ1, τ1, υ1)

with

σ2 = {c ∈ σ : r < tc < t}, σ1 = {c ∈ σ : r < tc < t}
etc. But t•σ+τ+υ is without multiple points m′-a.e. �
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8.6 Unitarity

The following theorem is essentially due to Hudson and Parthasarathy [36].

Theorem 8.6.1 Assume uts = uts(A1,A0,A−1;B). The mapping

O
(
uts
) :K → Γ

can be extended to a unitary mapping

Uts : Γ → Γ,

if and only if the operators Ai, i = 1,0,−1 and B fulfill the following conditions:
There exists a unitary operator Υ such that

A0 = Υ − 1,

A1 =−ΥA+−1,

B +B+ =−A+1 A1 =−A−1A
+
−1.

Proof We recall Proposition 6.3.2. For fixed s, the function u·s : t �→ uts , and for
fixed t , the function ut· : s �→ uts is of class C 1, and one has

∂c
t u
t
s = Buts,

(
R
j
+u·s
)
t
= Ajuts,

(
R
j
−u·s
)
t
= 0,

∂c
s u
t
s = −utsB,

(
R
j
+ut·
)
s
= 0,

(
R
j
−ut·
)
s
= utsAj

for j = 1,0,−1. We recall Ito’s formula from Theorem 7.4.1. Assume xt , yt to be
of class C 1, and that for f,g ∈Ks(R, k) the sesquilinear forms 〈f |B(Ft ,Gt )|g〉
exist in norm and t ∈ R �→ 〈f |B(Ft ,Gt )|g〉 is locally integrable, where Ft can
be any function in {xt , ∂cxt ,R

1±xt ,R0±xt ,R−1± xt } and Gt can be any function in
{yt , ∂cyt ,R

1±yt ,R0±yt ,R−1± yt }.
Then t �→ 〈f |B(xt , yt )|g〉 is continuous and its Schwartz derivative is a locally

integrable function, and this yields

∂〈f |B(xt , yt )|g〉 = 〈f |B
(
∂cxt , yt

)+B
(
f, ∂cyt

)+ I−1,+1,t |g〉
+ 〈a(t)f ∣∣B(D1xt , yt

)+B
(
f,D1yt

)+ I0,+1,t |g〉
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+ 〈a(t)f ∣∣B(D0xt , yt
)+B

(
f,D0yt

)+ I0,0,t
∣∣a(t)g

〉

+ 〈f |B(D−1xt , yt
)+B

(
f,D−1yt

)+ I−1,0,t
∣∣a(t)g

〉

with

Ii,j,t =B
(
Ri+xt ,R

j
+yt
)−B

(
Ri−xt ,R

j
−yt
)
.

We want to calculate the Schwartz derivatives of the functions

t �→ 〈f |B((uts
)+
, uts
)|g〉

s �→ 〈f |B(uts,
(
uts
)+)|g〉.

The derivatives exist, because u and u+, and the ∂c, R and D operators, applied to
u and u+, map K → Γ . We obtain

∂t 〈f |B
((
uts
)+
, uts
)|g〉 = 〈f |B(u+,C1u

)|g〉 + 〈a(t)f ∣∣B(u+,C2u
)|g〉

+ 〈a(t)f ∣∣B(u+,C3u
)∣∣a(t)g

〉+ 〈f |B(u+,C4u
)∣∣a(t)g

〉
,

∂s〈f |B
(
uts,
(
uts
)+)|g〉 = 〈f |B(u,C5u

+)|g〉 + 〈a(t)f ∣∣B(u,C6u
+)|g〉

+ 〈a(t)f ∣∣B(u,C7u
+)∣∣a(t)g

〉+ 〈f |B(u,C8u
+)∣∣a(t)g

〉

with

C1 = B +B+ +A+1 A1, C5 = B +B+ +A−1A
+
−1,

C2 =A+−1 +A1 +A+0 A1, C6 =A1 +A+−1 +A0A
+
−1,

C3 =A+0 +A0 +A+0 A0, C7 =A0 +A+0 +A0A
+
0 ,

C4 =A+1 +A−1 +A+1 A0, C8 =A−1 +A+1 +A−1A
+
0 .

The operator O(uts) is unitary if both derivatives vanish, and they vanish if
Ci = 0, i = 1, . . . ,8. The equations C3 = 0 and C7 = 0 imply

(
1+A+0

)
(1+A0)= (1+A0)

(
1+A+0

)= 1.

So

Υ = 1+A0

is unitary. The equations are not independent. We have C+2 = C4 and C+6 = C8.
Furthermore

C2 =A+−1 +
(
1+A+0

)
A1 =A+−1 +Υ +A1 = Υ +C6.

So C2 = 0 implies A1 =−ΥA+−1, and we conclude C1 = C5. �



154 8 The Hudson-Parthasarathy Differential Equation

Definition 8.6.1 For t < s we define

Uts =
(
Ust
)+
.

Proposition 8.6.1 For r, s, t ∈R we have

UtrU
r
s =Uts .

Proof For both cases s < r < t and t < r < s, the assertion follows from Proposi-
tion 8.5.1. For s < t < r , we calculate

〈
f |UtrUrs g

〉= 〈Urt f |
(
Urt
)+(
Uts g

)〉= 〈f |Uts g
〉
.

The other variants can be calculated similarly. �

8.7 Estimation of the Γk-Norm

Recall from Sect. 7.1
∫

m(π,σ, τ,υ,")f+(ω)F (σ, τ,υ)g(")=
∫
f+(ω)

(
O(F )g

)
(ω)= 〈f,O(F )g〉

with
(
O(F )g

)
(ω)=

∑

α⊂ω

∑

β⊂ω\α

∫

υ

λυF (α,β,υ)g(ω \ α + υ)

and

m= 〈aωa+σ+τ aτ+υa+"
〉
λω+υ.

So O(F ) is a mapping from Ks(X)=K into the locally λ-integrable functions on
X. Extend it to those functions g such that the integral exists in norm for almost all
ω and yields a locally integrable function in ω.

Recall furthermore

F+(σ, τ,υ)= F(υ, τ, σ )+
and the relation

〈
f |O(F )g〉= 〈O(F+)f |g〉

for f,g ∈K .

Lemma 8.7.1 Assume a locally integrable function F :R3 → B(k) and a bounded
operator T : Γ → Γ are given such that

T � K =O(F ).
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Then

T + � K =O
(
F+
)
.

Proof Assume h,g ∈K . Then

〈h|T g〉 = 〈h|O(F )g〉= 〈O(F+)h|g〉= 〈T +h|g〉.

As this holds for all g ∈K , we have T +h=O(F+)h. �

Lemma 8.7.2 Assume a locally integrable function F :R3 → B(k) and a bounded
operator T : Γ → Γ are given such that

T � K =O(F )

and there is a function f ∈ Γ , such that O(F )f exists, i.e.,

∫ ∥∥h(ω)
∥∥∥∥F(σ, τ,υ)

∥∥∥∥f (")
∥∥m<∞

for all h ∈K . Then

O(F )f = Tf.

Proof We have, for all h ∈K ,

∫
h+(ω)

(
O(F )f

)
(ω)dω=

∫
f+(ω)

(
O
(
F+
)
h
)
(ω)dω= 〈f |T +h〉= 〈h|Tf 〉.

�

Lemma 8.7.3 Assume we have uts = uts(Ai,B) satisfying the unitarity conditions,
and that Uts is the corresponding unitary operator. Assume G1, . . . ,Gk ∈ B(k) and
s = t0 < t1 < · · ·< tk < tk+1 = t , and also that

F(σ, τ,υ)

=
∑

σ0+σ1+···+σk=σ
τ0+τ1+···+τk=τ
υ0+υ1+···+υk=υ

uttk (σk, τk, υk)Gku
tk
tk−1
(σk−1, τk−1, υk−1)Gk−1

· · ·G2u
t2
t1
(σ1, τ1, υ1)G1u

t1
s (σ0, τ0, υ0).

Then, for g ∈K ,

O(F )g =UttkGkUtktk−1
Gk−1 · · ·G2U

t2
t1
G1U

t1
s g.
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Proof The case k = 0 is clear. We prove the induction step from k− 1 to k. Put, for
short,

u(i)= uti+1
ti
(σi, τi, υi).

Then split up F by writing

F =
∑
u(k)Gk · · ·u(1)G1u(0)=

∑

σk+σ ′=σ
τk+τ ′=τ
υk+υ ′=υ

u(k)GkF
′(σ ′, τ ′, υ ′

)

with

F ′
(
σ ′, τ ′, υ ′

)=
∑

σ0+···+σk−1=σ ′
τ0+···+τk−1=τ ′
υ0+···+υk−1=υ ′

u(k − 1)Gk−1 · · ·u(1)G1u(0).

Put

C =max
(‖Ai‖, i = 1,0,−1; ‖B‖; ‖Gi‖, i = 1, . . . , k

)
.

We have
∥∥F(σ, τ,υ)

∥∥≤ Ck+#(σ+τ+υ)1
{
tσ+τ+υ ⊂ [s, t]

}
.

So it is clearly locally integrable. An analogous assertion holds for F ′. For h ∈K ,
∫
h+(ω)

(
O(F )g

)
(ω)λω =

∫
h+(π)F (σ, τ,υ)g(")

〈
aπa

+
σ+τ aτ+υa+"

〉
λπ+υ.

Using Lemma 8.5.1, we see the last term equals
∫
h+(π)u(k)GkF ′

(
σ ′, τ ′, υ ′

)
g(")

〈
aπa

+
σk+τk aτk+υka

+
σ ′+τ ′aτ ′+υ ′a

+
"

〉
λπ+υk+υ ′ .

Now following Theorem 5.6.1, the representation of unity gives

〈
aπa

+
σk+τk aτk+υka

+
σ ′+τ ′aτ ′+υ ′a

+
"

〉=
∫

ω

〈
aπa

+
σk+τk aτk+υka

+
ω

〉〈
aωa

+
σ ′+τ ′aτ ′+υ ′a

+
"

〉
.

Put
∫
GkF

′(σ ′, τ ′, υ ′
)
g(")

〈
aωa

+
σ ′+τ ′aτ ′+υ ′a

+
"

〉
λυ ′ =

(
O
(
GkF

′)g
)
(ω)= f (ω).

Then
∫
h+(π)F (σ, τ,υ)g(")

〈
aπa

+
σ+τ aτ+υa+"

〉
λπ+υ

=
∫
h+(π)u(k)(σk, τk, υk)f (ω)

〈
aπa

+σk + τkaτk+υk
〉
λπ+υk .
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By the induction hypothesis

f =GkUtktk−1
· · ·G1U

t1
s g ∈ Γ.

We make the estimate
∫ ∥∥h(π)

∥∥∥∥u(k)
∥∥∥∥f (ω)

∥∥〈aωa+σk+τk aτk+υk
〉
λω+υk

=
∫ ∥∥h(π)

∥∥∥∥u(k
∥∥
∥∥∥∥

∫
GkF

′g(")
∥∥∥∥
〈
aπa

+
σ+τ aτ+υa+"

〉
λπ+υ

≤
∫ ∥∥h(ω)

∥∥∥∥F(σ, τ,υ)
∥∥∥∥g(")

∥∥m<∞

and note
∫
h+(ω)O

(
u(k)f

)
(ω)λω =

〈
h|Uttkf

〉
.

Continue with

O(F )g =Uttkf =UttkGkUtktk−1
Gk−1 · · ·G2U

t2
t1
G1U

t1
s g. �

Lemma 8.7.4 such that for g ∈ K we have ‖O(F )g‖Γ ≤ const‖g‖Γ and
‖O(F+)g‖Γ ≤ const‖g‖Γ . Let T : Γ → Γ the operator, such that O(F ) is the
restriction of T to K . Then O(F+) is the restriction of T + to K . Assume f ∈ Γ
such that O(‖F‖B(k))‖f ‖k ∈ L2(R), then

Tf =O(F )f.

Proof Assume g,h ∈K , then

〈h|T g〉 = 〈h|O(F )g〉=
∫
h+(ω)F (σ, τ,υ)g(")m

=
∫
g+(ω)F+(σ, τ,υ)h(")m= 〈O(F+)h|g〉= 〈T +h|g〉

with

m= 〈aωa+σ+τ aτ+υa+"
〉
λω+υ.

So O(F+) is the restriction of T + to K .
We have

∫ ∥∥h(ω)
∥∥∥∥F(σ, τ,υ)

∥∥∥∥g(")
∥∥m<∞.

Hence
∫
h+(ω)

(
O(F )f

)
(ω)dω=

∫
f+(ω)

(
O
(
F+
)
h
)
(ω)dω= 〈f |T +h〉= 〈h|Tf 〉.
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As this holds for any h ∈K the assertion follows. �

Lemma 8.7.5 Assume uts = uts(Ai,B) satisfying the unitarity conditions and Uts
the corresponding unitary operator. Assume G1, . . . ,Gk ∈ B(k) and s = t0 < t1 <
· · ·< tk < tk+1 = t and

F(σ, τ,υ)

=
∑

σ0+σ1+···+σk=σ
τ0+τ1+···+τk=τ
υ0+υ1+···+υk=υ

uttk (σk, τk, υk)Gku
tk
tk−1
(σk−1, τk−1, υk−1)Gk−1

· · ·G2u
t2
t1
(σ1, τ1, υ1)G1u

t1
s (σ0, τ0, υ0).

Then for f ∈K

O(F )g =UttkGkUtktk−1
Gk−1 · · ·G2U

t2
t1
G1U

t1
s g.

Proof The case k = 0 is clear. We prove by induction from k− 1 to k. Put for short

u(i)= uti+1
ti
(σi, τi, υi).

Then

F =
∑
u(k)Gk · · ·u(1)G1u(0)=

∑

σk+σ ′=σ
τk+τ ′=τ
υk+υ ′=υ

u(k)GkF
′(σ ′, τ ′, υ ′

)

with

F ′
(
σ ′, τ ′, υ ′

)=
∑

σ0+···+σk−1=σ ′
τ0+···+τk−1=τ ′
υ0+···+υk−1=υ ′

u(k − 1)Gk−1 · · ·u(1)G1u(0).

Go back to the proof of Proposition 4.4.1. Put

C =max
(‖Ai‖, i = 1,0,−1; ‖B‖; ‖Gi‖, i = 1, . . . , k

)
.

For g ∈K we have
∥∥(O

(‖F‖)‖g‖)∥∥
Γ
≤ c‖g‖Γ

∥∥(O
(∥∥F ′

∥∥)‖g‖)∥∥
Γ
≤ c′‖g‖Γ .

For h ∈K
∫
h+(ω)

(
O(F )g

)
(ω)λω =

∫
h+(π)F (σ, τ,υ)g(")

〈
aπa

+
σ+τ aτ+υa+"

〉
λπ+υ.
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Using the same argument as in the proof of Proposition 4.4.1 the last term equals
∫
h+(π)u(k)GkF ′

(
σ ′, τ ′, υ ′

)
g(")

〈
aπa

+
σk+τk aτk+υka

+
σ ′+τ ′aτ ′+υ ′a

+
"

〉
λπ+υk+υ ′ .

Now following Theorem 5.5.1

〈
aπa

+
σk+τk aτk+υka

+
σ ′+τ ′aτ ′+υ ′a

+
"

〉=
∫

ω

〈
aπa

+
σk+τk aτk+υka

+
ω

〉〈
aωa

+
σ ′+τ ′aτ ′+υ ′a

+
"

〉
.

As
∫
F ′
(
σ ′, τ ′, υ ′

)
g(")

〈
aωa

+
σ ′+τ ′aτ ′+υ ′a

+
"

〉
λυ ′ =

(
O
(
F ′
)
g
)
(ω)= f (ω)

the integrability conditions are fulfilled and one obtains
∫
h+(ω)

(
O(F )g

)
(ω)λω =

∫
h+(π)u(k)Gkf (ω)

〈
aπa

+
σk+τk aτk+υka

+
ω

〉
λπ+υk .

The conditions of the preceding lemma are fulfilled, the last expression equals

〈
h|Uttkf

〉= 〈h|UttkGkUtktk−1
Gk−1 · · ·G2U

t2
t1
G1U

t1
s g
〉

using the hypothesis of induction. �

Theorem 8.7.1 For any k there exists a polynomial P of degree ≤ k with coeffi-
cients ≥ 0, such that, for g ∈ Γk ,

∥∥Uts g
∥∥2
Γk
≤ P (|t − s|)‖g‖2

Γk
.

Proof Following Lemma 8.4.1 and Proposition 8.4.1, we have for f ∈K

〈
Uts f

∣∣
(
N

k

)∣∣Uts f
〉=
∫ ∥∥(Uts f

)
(ω+ ξ)∥∥21{#ξ = k}λω+ξ <∞.

Hence
∫ ‖(Uts f )(ω+ ξ)‖2λω <∞ for almost all ξ . We have

(
O
(
uts
))
(ω)=

∑

ω1+ω2+ω3=ω

∫
λυu

t
s(ω1,ω2, υ)f (ω2 +ω3 + υ)

and

(
O
(
uts
))
(ω+ ξ)

=
∑

ω1+ω2+ω3=ω
ξ1+ξ2+ξ3=ξ

∫
λυu

t
s(ω1 + ξ1,ω2 + ξ2, υ)f (ω2 + ξ2 +ω3 + ξ3 + υ)
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=
∑

ξ1+ξ2+ξ3=ξ

(
O
((
uts
)
ξ1,ξ2

))
fξ2+ξ3)(ω)

with

(
uts
)
ξ1,ξ2

(σ, τ,υ)= uts(σ + ξ1, τ + ξ2, υ),
fξ1+ξ2(")= f (ξ1 + ξ2 + ").

Assume that the multiset {s, t, tξ , tσ+τ+υ}• has no multiple points and order the set

{
(ti ,1) : i ∈ ξ1

}+ {ti ,0) : i ∈ ξ0} =
{
(t1, i1), . . . , (tl, il)

}

with t1 < · · ·< tl and ij ∈ {1,0}. Then

(
uts
)
ξ1,ξ2

(σ, τ,υ)

=
∑

σ0+σ1+···+σl=σ
τ0+τ1+···+τl=τ
υ0+υ1+···+υl=υ

uttl (σl, τl, υl)Ail u
tl
tl−1
(σl−1, τl−1, υl−1)Ail−1

· · ·Ai2ut2t1(σ1, τ1, υ1)Ai1u
t1
s (σ0, τ0, υ0).

Using the last lemma we obtain, for h ∈K ,

O
((
uts
)
ξ1,ξ2

)
h=UttlAil · · ·Ai2Ut2t1Ai1Ut1s h.

If C =max(‖Ai‖,‖B‖,1), then

∥∥O
((
uts
)
ξ1,ξ2

)
h
∥∥
Γ
≤ C#(ξ1+ξ2)1

{
tξ1+ξ2 ⊂ [s, t]

}‖h‖Γ .

Finally

〈
Uts f

∣∣
(
N

k

)∣∣Uts f
〉=
∫ ∥∥(Uts f

)
(ω+ ξ)∥∥21{#ξ = k}

=
∫ ∥∥∥∥

∑

ξ1+ξ2+ξ3=ξ
O
(
uts
)
ξ1,ξ2

fξ2,ξ3(ω)1{#ξ = k}
∥∥∥∥

2

λξ+ω

≤ C2k3k
∫
λξ+ω

×
∑

ξ1+ξ2+ξ3=ξ
1{#ξ = k}1{tξ1+ξ2 ⊂ [s, t]

}∥∥f (ξ2 + ξ3 +ω)
∥∥2

≤ C2k3k
k∑

k1=0

∫
λξ1 1{#ξ1 = k1}1

{
tξ1 ⊂ [s, t]

}
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×
∫
λξ0+ω1{#ξ0 = k− k1}

∥∥f (ξ0 +ω)
∥∥2

= C2k3k
k∑

k1

(t − s)k1

k1! 〈f |
(
N

k − k1

)
|f 〉.

�

The previous theorem covers the case s < t ; a proof for t < s can be carried out
in the same way.

8.8 The Hamiltonian

8.8.1 Definition of the One-Parameter Group W(t)

Denote by Θ(t) the right shift on R, and extend it to R,

Θ(t)(t1, . . . , tn)= (t1 + t, . . . , tn + t).
If {t1, . . . , tn}• is a multiset, we define

Θ(t){t1, . . . , tn}• = {t1 + t, . . . , tn + t}•.
In the notation {t1, . . . , tn}• = tα we write Θ(t)tα = tα + t eα with eα = {1, . . . ,1}•.

If f is a function on R, then (Θ(t)f )(w)= f (Θ(t)w). If μ is a measure on R,
then Θ(t)μ is defined by the property

∫ (
Θ(t)μ(dw)

) (
Θ(t)f (w)

)=
∫
μ(dw)f (w).

If μ(dw) = g(w)dw then Θ(t)μ(dw) = (Θ(t)g)(w)dw. Similar notations hold
for Rk .

Lemma 8.8.1 We have

(
Θ(t)εx

)
(dy)= εx−t (dy).

If ϕ is function on R, ν a measure on R, f a function on R, and μ is measure on
R, one calculates

Θ(t)
(
a+(ϕ)f

)= a+(Θ(t)ϕ)(Θ(t)f ),
Θ(t)

(
a+(ν)μ

)= a+(Θ(t)ν)(Θ(t)μ),
Θ(t)

(
a(ν)f

)= a(Θ(t)ν)(Θ(t)f ),
Θ(t)

(
a(ϕ)μ

)= a(Θ(t)ϕ)(Θ(t)μ).
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Proof The identities follow directly from the definitions. �

Lemma 8.8.2 IfW is an admissible sequence, then 〈W 〉λω−\ω+ is a shift-invariant
measure.

Proof According to the considerations in Sect. 5.6, this measure is a sum of mea-
sures, each one a tensor product of measures of the form

Λ(dt1, . . . ,dtn) :
∫
Λ(dt1, . . . ,dtn)f (t1, . . . , tn)=

∫
dtf (t, . . . , t).

So it is clearly invariant due to the shift-invariance of Lebesgue measure dt . �

Upon using the defining formulas, one obtains immediately

Lemma 8.8.3 One has

Θ(r)uts = ut−rs−r
for r, s, t ∈R.

Proposition 8.8.1 Define a unitary operator Θ(t) on Γ by f �→Θ(t)f . The op-
erators Uts , s, t ∈R, form a cocycle with respect to Θ(t), i.e.

Θ(r)UtsΘ(−r)=Ut−rs−r .

Proof Use the invariance of

m= 〈aπa+σ+τ aτ+υa+"
〉
λπ+υ

and obtain
∫

Γ

f+(π)ut−rs−r (σ, τ, υ)g(")m=
∫
f+(π)

(
Θ(r)uts(σ, τ, υ)

)
g(")m

=
∫ (
Θ(−r)f+)(π)uts(σ, τ, υ)

(
Θ(−r)g)(")m

= 〈Θ(−r)f |UtsΘ(−r)g
〉= 〈f |Θ(r)UtsΘ(−r)g

〉
.

�

Proposition 8.8.2 Define, for t ∈R,

W(t)=Θ(t)Ut0 =U0−tΘ(t);

then W(t) is a unitary strongly continuous one-parameter group on Γ .
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Proof We haveW(0)= 1 and

W(s + t)=Θ(t + s)Ut+s0 =Θ(t)Θ(s)Ut+ss Θ(−s)Θ(s)Us0 =W(s)W(t),
and also

W(t)+ =U0
t Θ(−t)=Θ(−t)U−t0 =W(−t). �

An immediate consequence of Proposition 8.4.1 and Theorem 8.7.1 is

Proposition 8.8.3 The operators W(t) map the space Γk into itself, they form a
strongly continuous one-parameter group on Γk , and

∥∥W(t)f
∥∥2
Γk
≤ P (|t |)‖f ‖2

ΓK

where P is a polynomial of degree ≤ k.

8.8.2 Definition of â, â+ and ∂̂

If ϕ is an integrable function on the real line, we define

Θ(ϕ)=
∫
ϕ(t)Θ(t)dt,

which is, for any k, an operator mapping Γk into Γk .
If ν is a measure on R and f a locally integrable function, symmetric on R, then

(
a+(ν)f λ

)
(ω)=

∑

c∈ω
ν(c)f (ω \ c)λ(ω \ c).

We shall use again L. Schwartz’s convention [37], and denote f λ by f . So we write

(
a+(ν)f

)
(ω)=

∑

c∈ω
ν(c)f (ω \ c).

We set

a= a(ε0)= a(0), a
+ = a+(ε0).

We use Gothic a+ in order to distinguish it from the a+(dx) = a+(ε(dx)) used in
the preceding text; a(ε0)= a(0)= a is the same as before. We have

(
a
+f
)
(ω)=

∑

c∈ω
ε0(dtc)f (tω\c)=

∑

c∈ω
ε0(dtc)f (tω\c)λ(dtω\c).

The duality relation (see Sect. 5.6) becomes
∫
g(ω)

(
a
+f
)
(ω)=

∫
(ag)(ω)f (ω)λ(ω).
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Lemma 8.8.4 Assume f ∈ L2(Rn) and ϕ ∈ (L1 ∩ L2)(R). Then Θ(ϕ) maps the
singular measure a+f into an absolute continuous measure identified with its den-
sity, and we have

(
Θ(ϕ)a+f

)
(tω)=

∑

c∈ω
ϕ(−tc)

(
Θ(−tc)f

)
(ω \ c).

The map Θ(ϕ)a+ can be extended to a mapping Γk→ Γk−1, and we have

∥∥Θ(ϕ)a+f
∥∥
Γk−1

≤ ‖ϕ‖L2‖f ‖Γk .

We have
∫
g(ω)+

(
Θ(ϕ)a+f

)
(tω)dω=

∫ (
aΘ
(
ϕ+
)
g
)+
(ω)f (ω)dω

with ϕ+(t)= ϕ(−t). One obtains

(
aΘ(ϕ)f

)
(t1, . . . , tn)=

∫
ϕ(s)dsf (s, t1 + s, . . . , tn + s).

This map can be extended to a mapping Γk→ Γk−1, and we have

∥∥aΘ(ϕ)f
∥∥
Γk−1

≤ 2k/2‖ϕ‖L2‖f ‖Γk .

Proof One has

∫
ds ϕ(s)Θ(s)

(∑

c∈ω
ε0(dtc)f (tω\c)λ(dtω\c)

)

=
∫

ds ϕ(s)
∑

c∈ω
ε−s(dtc)

(
Θ(s)f

)
(tω\c)λ(dtω\c)

=
∫

ds ϕ(−s)
∑

c∈ω
εs(dtc)

(
Θ(−s)f )(tω\c)λ(dtω\c)

=
∑

c∈ω
ϕ(−tc)

(
Θ(−tc)f

)
(ω \ c)λ(ω \ c),

by changing the variable s �→ −s to get the second equality, and using for the third

∫
ds ϕ(s)εs( tc)ψ(tc)=

∫
ϕ(tc)ψ(tc)dtc,

or more succinctly
∫

ds εs(dtc)= dtc.
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So Θ(ϕ) works as a mollifier, as it is called in Schwartz’s theory of distributions,
making a function out of a singular measure. The other results follow by simple
calculations. �

Lemma 8.8.5 If ϕ ∈ (L1 ∩L2)(R) and f ∈ L2(Rn+1), then

x ∈R
n+1 �→ g(x)

g(x)(t1, . . . , tn)=
(
Θ(ϕ)f

)(
(0, t1, . . . , tn)+ x

)

maps R
n+1 into L2(Rn), and furthermore x �→ g(x) is a continuous function

bounded by ‖ϕ‖L2(R)‖f ‖L2(Rn+1).

Proof We have with e= (1,1, . . . ,1)
∥∥g(x)− g(y)∥∥2

L2(Rn)

=
∫

dt1 · · ·dtn
∥∥∥∥

∫
ds ϕ(s)(f

(
(0, t1, . . . , tn)+ se+ x

)

− f ((0, t1, . . . , tn)+ se+ y
)
∥∥∥
∥

2

≤ ‖ϕ‖2
L2(R)

∫
dt1 · · ·dtn

∫
ds

× ∥∥f (s + x0, t1 + s + x1, . . . , tn + s + xn)
− f (s + y0, t1 + s + y1, . . . , tn + s + yn)

∥∥2

= ‖ϕ‖2
L2(R)

∫
dt0 · · ·dtn

∥∥f (t0 + x0, . . . , tn + xn)− f (t0 + y0, . . . , tn + yn)
∥∥2

= ‖ϕ‖2
L2(R)

∥∥(T (x)− T (y))f ∥∥2
L2(Rn+1)

where T (x) denotes translation by x. The bound for ‖g(x)‖ can be shown in the
same way. �

Lemma 8.8.6 Assume f ∈ L2(Rns ), and that η ∈ L2(R) is a continuous bounded
function on R\{0} with right and left limits at 0, or, in other words, η is a continuous
bounded function on R0. If

x ∈R
n+1 �→ g(x) ∈ L2(

R
n
)

g(x)(t1, . . . , tn)=
(
Θ(η)a+f

)(
(0, t1, . . . , tn)+ x

)

then
∥∥g(x)

∥∥
L2(Rn)

≤ (n+ 1)‖η‖∞‖f ‖L2(Rn)
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for all x ∈ L2(Rn+1), and x �→ g(x) is continuous on {(x0, x1, . . . , xn) : x0 �= 0}.
We have that the limits g(0±, x1, . . . , xn) exist and

g(0+, x1, . . . , xn)− g(0−, x1, . . . , xn)=−
(
η(0+)− η(0−))T (x1, . . . , xn)f

where T (x) is the translation by x.

Proof We have

(
Θ(η)a+f

)
(t0, t1, . . . , tn)= k0(t0, t1, . . . , tn)+ · · · + kn(t0, t1, . . . , tn)

with

k0(t0, t1, . . . , tn)= η(−t0)f (t1 − t0, t2 − t0, . . . , tn − t0),
k1(t0, t1, . . . , tn)= η(−t1)f (t0 − t1, t2 − t1, . . . , tn − t1),

...

kn(t0, t1, . . . , tn)= η(−tn)f (t0 − tn, t1 − tn, . . . , tn−1 − tn).
Define

gi(x)(t1, . . . , tn)= ki
(
(0, t1, . . . , tn)+ x

)

and first discuss gi with i �= 0, for example, gn. We have

gn(x)(t1, . . . , tn)= kn
(
(0, t1, . . . , tn)+ x

)= kn(x0, t1 + x1, . . . , tn + xn)
= η(−xn − tn)f (x0 − xn − tn, x1 − xn + t1 − tn, . . . ,

xn−1 − xn + tn−1 − tn)
= η(−xn − tn)

(
T
(
x′
)
f
)
(−tn, t1 − tn, . . . , tn−1 − tn−1)

with

x′ = (x0 − xn, x1 − xn, . . . , xn−1 − xn).
From there one obtains

∥∥gn(x)
∥∥≤ ‖η‖∞‖f ‖.

We have
∫

dt1 · · ·dtn
∥∥kn
(
(0, t1, . . . , tn)+ x

)− kn
(
(0, t1, . . . , tn)+ y

)∥∥2

≤ 2
∫

dt1 · · ·dtn
∣∣η(−xn − tn)− η(−yn − tn)

∣∣2

× ∥∥(T (x′)f )(−tn, t1 − tn, . . . , tn−1 − tn−1)
∥∥2
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+ 2‖η‖2∞
∫

dt1 · · ·dtn
∥∥(T

(
x′
)− T (y′))f (−tn, t1 − tn, . . . , tn−1 − tn−1)

∥∥2
.

For y→ x, the first term goes to zero by the theorem of Lebesgue, and from the
second term we observe that z �→ T (z)f is norm continuous. So gn(x) and thus
gi(x), i �= 0 are continuous for all x. We have

g0(x)= η(−t0)f (t1 + x1 − x0, t2 + x2 − x0, . . . , tn + xn − x0).

From there one obtains the result. �

We double the point 0 to {−0,+0}, and introduce

R0 = ]−∞,−0] + [+0,∞[
with the usual topology, i.e., R0 = R≤0 +R≥0. A function f on R0 is continuous,
if its restriction to R \ {0} is continuous and if both limits f (±0) exist. We define

R0 = {∅} +R0 +R
2
0 + · · · .

We introduce on R0 and on R0 the Lebesgue measure λ. A continuous function on
R \ {0} which has left and right limits at 0 can be considered as a function on R0.
We define the measures ε±0, and, for symmetric functions f on R0, the operators
a± = a(ε±0) and a

+± = a+(ε±0) and shall use similar conventions to those above.
We put

ε̂0 = 1

2
(ε+0 + ε−0), â= 1

2
(a+ + a−), â

+ = 1

2

(
a
++ + a

+−
)
.

A δ-sequence is a sequence of functions ϕn ∈ C∞c such that

∫
ϕn(t)dt = 1,

∫ ∣∣ϕn(t)
∣∣dt ≤ C <∞, supp(ϕn)⊂ ]−εn, εn[

and εn ↓ 0.

Definition 8.8.1 We term a δ-sequence ϕn a symmetric δ-sequence, if the ϕn are
real and ϕn(t)= ϕn(−t) for all n and t .

Proposition 8.8.4 Assume we have two functions f and η fulfilling the conditions
of Lemma 8.8.6, then âΘ(η)a+f exists, and

∥∥âΘ(η)a+f
∥∥
Γ
≤ ‖η‖∞‖f ‖Γ2;

if ϕn is a symmetric δ-sequence, then aΘ(ϕn)Θ(η)a
+f exists, and

aΘ(ϕn)Θ(η)a
+f → âΘ(η)a+f.
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Proof We apply Lemma 8.8.6. We have
(
Θ(η)a+f

)
(s, t1, . . . , tn)= g(s,0, . . . ,0)(t1, . . . , tn)

and g(s,0, . . . ,0)→ g(0+,0, . . . ,0) for s ↓ 0. From there one concludes the exis-
tence of âΘ(η)a+f . We have

(
aΘ(s)Θ(η)a+f

)
(t1, . . . , tn)= g(s, . . . , s)(t1, . . . , tn)

and g(s, . . . , s)→ g(0+,0, . . . ,0) for s ↓ 0. From there one obtains the rest of the
proposition. �

Assume ϕn to be a symmetric δ-sequence and f ∈ D, then aΘ(ϕn)f → âf in
the norm of Γ . If f ∈ C1(Rn) and ϕn is a δ-sequence, then

Θ
(
ϕ′n
)
f (t)=

∫
ϕ′n(s)f (t + se)ds

=−
∫
ϕn(s)f

′(t + se)ds→−
∑ ∂f

∂ti
(t)=−(∂f )(t).

This motivates

Definition 8.8.2 We define

∂̂ =− limΘ
(
ϕ′n
)
,

where ϕn is a symmetric δ-sequence.

Proposition 8.8.5 Assume we are given a function η ∈ L2(R), which is bounded
and C1 on R \ {0} and has left and right limits at 0, so the Schwartz derivative of η
equals

∂η= (η(+0)− η(−0)
)
δ+ ∂cη,

where ∂cη is the continuous part of the derivative. Assume, furthermore, that ∂cη ∈
L2(R). Put

L n(η)= {Θ(η)a+f, f ∈ L2
s

(
R
n
)}

and let L n(η)† denote the space of all semilinear functionals L n(η)→C. Then ∂̂
defines a linear mapping

L n(η)→L n(η)†

given by the sesquilinear form on L n(η)

〈u|∂̂|v〉 = − lim〈u|Θ(ϕ′n
)|v〉.

This sesquilinear form is antisymmetric. One has

∂̂Θ(η)f = (η(+0)− η(−0)
)
â
+f +Θ(∂cη

)
a
+f.
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Proof We have
〈
Θ(η)a+g|Θ(ϕ′n

)
Θ(η)a+f

〉= 〈Θ(η)a+g|Θ(ϕ′n % η
)
a
+f
〉
,

where % denotes the usual convolution. As

ϕ′n % η= ϕn % η′ =
(
η(+0)− η(−0)

)
ϕn + ϕn % ∂cη

we continue

= (η(+0)− η(−0)
)〈
Θ(η)a+g|Θ(ϕn)a+f

〉+ 〈Θ(η)a+g|Θ(ϕn % ∂cη)a+f
〉
.

The second term converges to
〈
Θ(η)a+g|Θ(∂cη)a+f

〉
.

For the first term observe that
〈
Θ(η)a+g|Θ(ϕn)a+f

〉= 〈aΘ(ϕn)Θ(η)a+g|f
〉

using ϕ+ = ϕ. By Proposition 8.8.4 this expression converges to
〈
âΘ(η)a+g|f 〉= 〈Θ(η)a+g|â+f 〉.

In order to show that ∂̂ is antisymmetric, observe that ϕ′n is antisymmetric,
(
ϕ′n
)
(−t)=−ϕ′n(t),

and apply Proposition 8.8.4 again. �

8.8.3 Characterization of the Hamiltonian

We recall the resolvent (from Sect. 3.1) associated to the group W(t).

Definition 8.8.3 For z ∈C, Im z �= 0, the resolvent R(z) is defined by

R(z)=
{
−i
∫∞

0 eiztW(t)dt for Im z > 0,

+i
∫ 0
−∞ eiztW(t)dt for Im z < 0.

The Hamiltonian H ofW(t) is so defined that −iH is the generator of the group
W(t) (see Sect. 3.1). Its domain is the set

D =R(z)Γ,
where z ∈ C, Im z �= 0. The set D is independent of the z chosen. The Hamiltonian
is a selfadjoint operator given by the equation

HR(z)f =−f + zR(z)f.
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Definition 8.8.4 Furthermore, we set

S(z)=
{
−i
∫∞

0 eiztW(t)a(t) for Im z > 0,

+i
∫ 0
−∞ eiztW(t)a(t) for Im z < 0

and

κ(z)=
{
−i1{t > 0}eizt+Bt for Im z > 0,

+i1{t < 0}eizt−B+t for Im z < 0

and

R̃(z)=Θ(κ(z))=
{−i

∫∞
0 eizteBtΘ(t)dt for Im z > 0,

+i
∫ 0
−∞ eizte−B+tΘ(t)dt for Im z < 0.

Proposition 8.8.6 We have, for f ∈K ,

R(z)f = R̃(z)f

+
{

iR̃(z)a+A1R(z)f + iR̃(z)a+A0S(z)f + iR̃(z)A−1S(z)f

−iR̃(z)a+A+−1R(z)f − iR̃(z)a+A+0 S(z)f − iR̃(z)A+1 S(z)f.

The upper line holds for Im z > 0, the lower one for Im z < 0.

Proof Directly from the definition for t > s, considering first the variation in t and
then in s, we have

uts(σ, τ, υ)= eB(t−s)e(σ, τ,υ)

+
∑

c∈σ
eB(t−tc)1

{
tc ∈ [s, t]

}
A1u

tc
s (σ \ c, τ, υ)

+
∑

c∈τ
eB(t−tc)1

{
tc ∈ [s, t]

}
A0u

tc
s (σ, τ \ c,υ)

+
∑

c∈υ
eB(t−tc)1

{
tc ∈ [s, t]

}
A−1u

tc
s (σ, τ, υ \ c)

= eB(t−s)e(σ, τ,υ)

+
∑

c∈σ
uttc (σ \ c, τ, υ)A1eB(tc−s)1

{
tc ∈ [s, t]

}

+
∑

c∈τ
uttc (σ, τ \ c,υ)A0eB(tc−s)1

{
tc ∈ [s, t]

}

+
∑

c∈υ
uttc (σ, τ, υ \ c)A−1eB(tc−s)1

{
tc ∈ [s, t]

}
.
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Hence, working with the second formula above since adjoint will reverse the order
of things in a product,

(
uts
)+
(σ, τ,υ)= (uts(υ, τ, σ )

)+

= eB
+(t−s)e(σ, τ,υ)

+
∑

c∈σ
eB

+(tc−s)1
{
tc ∈ [s, t]

}
A+−1

(
utcs
)+
(σ \ c, τ, υ)

+
∑

c∈τ
eB

+(tc−s)1
{
tc ∈ [s, t]

}
A+0
(
utcs
)+
(σ, τ \ c,υ)

+
∑

c∈υ
eB

+(tc−s)1
{
tc ∈ [s, t]

}
A+1
(
utcs
)+
(σ, τ,υ \ c).

Assume f,g ∈K and using the same arguments as in the proof of Theorem 8.2.1
we obtain

〈
f |Uts g

〉= 〈f |eB(t−s)g〉+
∫ t

s

dr
(〈
a(r)f |eB(t−r)A1U

r
s g
〉

+ 〈a(t)f |eB(t−r)A0U
r
s a(r)g

〉+ 〈f |eB(t−r)A−1U
r
s a(r)g

〉)

and

〈
f |(Uts

)+
g
〉= 〈f |eB+(t−s)g〉+

∫ t

s

dr
(〈
a(r)f |eB+(r−s)A+−1

(
Utr
)+
g
〉

+ 〈a(r)f |eB+(r−s)A+0
(
Utr
)+
a(r)g

〉+ 〈f |eB+(r−s)A+1
(
Utr
)+
a(r)g

〉)
.

Finally, for t > 0,

〈
f |Ut0g

〉= 〈f |eBtg〉+
∫ t

0
dr
(〈
a(r)f |eB(t−r)A1U

r
0g
〉

+ 〈a(r)f |eB(t−r)A0U
r
0a(r)g

〉+ 〈f |eB(t−r)A−1U
r
0a(r)g

〉)

and, for t < 0,
〈
f |Ut0g

〉= 〈f |(U0
t

)+
g
〉

= 〈f |e−B+t g〉+
∫ 0

t

dr
(〈
a(r)f |eB+(r−t)A+−1U

r
0g
〉

+ 〈a(r)f |eB+(r−t)A+0 Ur0a(r)g
〉+ 〈f |eB+(r−t)A+1 Ur0a(r)g

〉)
.

We want now to calculate the resolvent for Im z > 0

〈
f |R(z)g〉=−i

∫ ∞

0
dt eizt 〈f |Θ(t)Ut0g

〉=−i
∫ ∞

0
dt eizt 〈Θ(−t)f |Ut0g

〉
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and consider, for example, the term

− i
∫ ∞

0
dteizt

∫ t

0
dr
〈
a(r)Θ(−t)f |eB(t−r)A0U

r
0a(r)g

〉

=−i
∫ ∞

0
dr
∫ ∞

r

eizt 〈a(r)Θ(−t)f |eB(t−r)A0U
r
0a(r)g

〉

Introduce t ′ = t − r and call it again t and continue

=−i
∫ ∞

0
dr
∫ ∞

0
dteiz(t+r)〈a(r)Θ(−t − r)f |eBtA0U

r
0a(r)g

〉

=−i
∫ ∞

0
dr
∫ ∞

0
dteiz(t+r)〈a(0)eB+tΘ(−t)f |A0Θ(r)U

r
0a(r)g

〉

= 〈aR̃(z)+g|iA0S(z)g
〉= i

〈
f |R̃(z)a+A0S(z)g

〉
.

By similar calculations one finishes the proof. �

Corollary 8.8.1 If f ∈K , we may write

R(z)f = R̃(z)(f0(z)+ a
+f1(z)

)

with

f0(z)= f +
{
+iA−1S(z)f for Im z > 0,

−iA+1 S(z)f for Im z < 0

and

f1(z)=
{
+iA1R(z)f + iA0S(z)f for Im z > 0,

−iA+−1R(z)f − iA0 + S(z)f for Im z < 0.

Definition 8.8.5 The vector space D̂ ⊂ Γ is defined by

D̂ = {f = R̃(z)(f0 + a
+f1
) : f0 ∈ Γ1, f1 ∈ Γ2

}
.

Proposition 8.8.7 The resolvent maps K to D̂:

R(z) :K → D̂.

Proof By Proposition 8.8.3

∥∥W(t)f
∥∥2
Γk
≤ P (|t |)‖f ‖2

Γk
,
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where P(|t |) is a polynomial in t of degree ≤ k with coefficients ≥ 0. So, for exam-
ple, for Im z > 0

∥∥R(z)f
∥∥
Γk
≤
∫ ∞

0
dt exp(−t Im z)

√
P
(|t |)‖f ‖Γk .

If f ∈K , the function f ∈ Γk for all k. The functions a(t)f, t ∈ R are uniformly
bounded in any Γk-norm. Hence R(z)f and S(z)f are in Γk for all k. �

Proposition 8.8.8 For f ∈K , we have

âR(z)f = S(z)f +
{

1
2A1R(z)f + 1

2A0S(z)f for Im z > 0,
1
2A

+
−1R(z)f + 1

2A
+
0 S(z)f for Im z < 0.

Proof We first prove the case Im z > 0. We have
(
U0−t f

)
(ω+ c)= (U0−t a(tc)f

)
(ω)

+ 1
{
tc ∈ [−t,0]

}((
U0
tc
A1U

tc−t f
)
(ω)+ (U0

tc
A0U

tc−t a(tc)f
)
(ω)
)

and
(
R(z)f

)
(ω+ c)

=−i
∫ ∞

0
dteizt(Θ(t)Ut0f

)
(ω+ c)=−i

∫ ∞

0
dteizt(U0−tΘ(t)f

)
(ω+ c)

=−i
∫ ∞

0
dt
(
U0−tΘ(t)a(tc + t)f

)
(ω)− i1{tc < 0}U0

tc

×
(
A1

∫ ∞

−tc
dteizt(Utc−tΘ(t)f

)
(ω)+A0

∫ ∞

−tc
dteizt(Utc−tΘ(t)a(tc + t)f

)
(ω)

)
.

One concludes
(
R(z)f

)
(0+, t1, . . . , tn)=

(
S(z)f

)
(t1, . . . , tn),

(
R(z)f

)
(0−, t1, . . . , tn)=

(
S(z)f

)
(t1, . . . , tn)+A1

(
R(z)f

)
(t1, . . . , tn)

+A0
(
S(z)f

)
(t1, . . . , tn).

Similarly, for Im z < 0,
(
R(z)f

)
(0+, t1, . . . , tn)=

(
S(z)f

)
(t1, . . . , tn)+A+−1

(
R(z)f

)
(t1, . . . , tn)

+A+0
(
S(z)f

)
(t1, . . . , tn),

(
R(z)f

)
(0−, t1, . . . , tn)=

(
S(z)f

)
(t1, . . . , tn). �

We start with an Ansatz Ĥ for H .
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Definition 8.8.6 Assume we have four operatorsM0,M±1,G ∈ B(k) such that

M+
0 =M0, M+

1 =M−1, G+ =G.

Define a mapping D̂→ D̂† (D̂† is the space of all semilinear functionals D̂→ C)
by

Ĥ = i∂̂ +M1â
+ +M0â

+
â+M−1â+G.

The following lemma is a direct consequence of Proposition 8.8.5 and the as-
sumptions about the coefficients.

Lemma 8.8.7 The sesquilinear form

f,g ∈D �→ 〈f |Ĥg〉 = 〈f |(i∂̂ +G)g〉+ 〈âf |M1g〉 + 〈âf |âM0g〉 + 〈f |âM−1g〉
exists and is symmetric.

As already stated in Sect. 4.2.2, we may embed Γ into D̂† by the mapping

f ∈ Γ �→ (
g ∈ D̂ �→ 〈g|f 〉).

As D̂ is dense in Γ , we can embed

D̂ ⊂ Γ ⊂ D̂†.

Proposition 8.8.9 Assume f = R̃(z)(f0 + a+f1) ∈ D̂. Then

Ĥf =−(f0 + â
+f1
)+ (z− iC(z)

)
f +M1â

+f +M0â
+
âf +M−1âf

with

C(z)=
{
+B for Im z > 0,

−B+ for Im z < 0.

Then Ĥf ∈ Γ if and only if

−f1 +M1f +M0âf = 0.

Proof We calculate the Schwartz derivative

κ(z)′ = −iδ + ∂cκ(z)=−iδ+ (iz+C(z))κ(z)
and obtain (see Definition 8.8.4)

∂̂R̃(z)
(
f0 + a

+f1
)=− limΘ

(
ϕ′n
)
Θ
(
κ(z)

)(
f0 + a

+f1
)

=− limΘ
(
ϕn ∗ κ(z)′

)(
f0 + a

+f1
)
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=− limΘ
(−iϕn + ϕn % ∂cκ(z)

)(
f0 + a

+f1
)

= i
(
f0 + â

+f1
)−Θ(∂cκ(z)

)(
f0 + a

+f1
)

= i
(
f0 + â

+f1
)− (iz+C(z))f.

Finally

Ĥf =−(f0 + â
+f1
)+ (z− iC(z)

)
f +M1â

+f +M0â
+
âf +M−1âf.

This formula shows that the singular part of Ĥf vanishes if and only if the corre-
sponding equation in the proposition is fulfilled. �

Definition 8.8.7 Define D0 as the subspace of those functions f = R̃(z)(f0 +
a+f1) ∈ D̂ which obey the condition of Proposition 8.8.9, i.e., f = R̃(z)(f0 +
a+f1) ∈ Γ , and denote by H0 the restriction of Ĥ to D0f .

Lemma 8.8.8 As Ĥ is symmetric on D̂, it is symmetric on D0 too.

The conditions for the unitarity of the operators O(uts)(Ai,B) were (Theo-
rem 8.6.1) that the operators Ai, i = 1,0,−1 and B fulfill the following conditions:
There exists a unitary operator Υ such that

A0 = Υ − 1,

A1 =−ΥA+−1,

B +B+ =−A+1 A1 =−A−1A
+
−1.

Theorem 8.8.1 The operator Ĥ fulfills the equation

ĤR(z)f =−f + zR(z)f (∗)

for all f ∈K if and only if

A1 = 1

i−M0/2
M1,

A0 = M0

i−M0/2
,

A−1 =M−1
1

i−M0/2
,

B =−iG− i

2
M−1

1

i−M0/2
M1.

(∗∗)

As a consequence

Υ = i+M0/2

i−M0/2
.
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If equation (∗∗) is fulfilled, thenR(z)maps K intoD0. The domainD of the Hamil-
tonian H of W(t) contains D0 and the restriction of H to D0 coincides with the
restriction H0 of Ĥ to D0, and furthermore D0 is dense in Γ and H is the closure
of H0.

Proof Assume at first Im z > 0. By Propositions 8.8.8 and 8.8.9,

i∂̂Rf =−f − iA1SF − â
+(iA1Rf + iA0Sf )+ (z− iB)Rf

âRf = Sf + 1

2
A1Rf + 1

2
A0Sf.

Then

ĤRf =−f + zRf +C1â
+Rf +C2â

+Sf +C3Sf +C4Rf

with

C1 =−iA1 +M1 + 1

2
M0A1,

C2 =−iA0 +M0 + 1

2
M0A0,

C3 =−iA−1 +M−1 + 1

2
M−1A0,

C4 =−iB +G+ 1

2
M−1A1.

The equations C1 = C2 = C3 = C4 = 0 are equivalent to (∗∗).
For Im z < 0, we obtain

i∂̂R =−(f − iA+1 Sf
)+ â

+(iA−1Rf +A+0 Sf
)+ (z+ iB+

)
Rf,

âRf = Sf + 1

2
A+−1Rf +

1

2
A+0 Sf.

Again

ĤRf =−f + zRf +C′1â+Rf +C′2â+Sf +C′3Sf +C′4Rf
with

C′1 = iA+−1 +M1 + 1

2
M0A

+
−1,

C′2 = iA+0 +M0 + 1

2
M0A

+
0 ,

C′3 = iA+1 +M−1 + 1

2
M−1A

+
0 ,

C′4 = iB+ +G+ 1

2
M−1A

+
−1.
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Equations C′1 = C′2 = C′3 = C′4 = 0 are equivalent to (∗∗) as well, as it should be.
We know already that R(z) maps K into D for Im z �= 0. Formula (∗) shows that
R(z) maps K into D0.

We studied in Sect. 3.1 the following situation. Assume a unitary group U(t) and
a dense subspace V0 ⊂ V . Assume given a subspace D0 ⊂ V and that z and z are in
the resolvent set of the Hamiltonian, and, furthermore, that R(z)V0 and R(z)V0 are
contained in D0. Let there be given a symmetric operator H0 :D0 → V , i.e.

(f |H0g)= (H0g|f )
for f,g ∈D0, and assume that

H0R(z)ξ =−ξ + zR(z)ξ,
H0R(z)ξ =−ξ + zR(z)ξ

for ξ ∈ V0.
Then the subspace D0 is dense in V and D0 ⊂D, the domain of H ; also

H0 =H �D0,

and H is the closure of H0.
We apply this result to U(t)→W(t),V → Γ,V0 →K and finish the proof. �

Remark 8.8.1 L. Accardi [2, 4] and J. Gough [20] studied the so-called Hamiltonian
form of quantum stochastic differential equations, and arrived at similar formulae.
In particular, a Cayley transform, like that in equation (∗∗), shows up. Writing a
Hamiltonian form for the equations is different from finding a Hamiltonian.

Another representation of the Hamiltonian prior to our representation was found
by Gregoratti [22], who used the ideas of Chebotarev [14]. Chebotarev had obtained
a characterization of the Hamiltonian for the Hudson-Parthasarathy equation with
commuting coefficients.



Chapter 9
The Amplified Oscillator

Abstract We study the quantum stochastic differential equation of the amplified
oscillator. The solution can be given as a series of normal ordered monomials. The
series can be summed with the help of Wick’s theorem. From there one gets an a
priori estimate. As the solution is a C 1-process, we can prove that it is a unitary
cocycle. We obtain the Heisenberg equation studied in Chap. 4, and from there an a
posteriori estimate strong enough to calculate the explicit form of the Hamiltonian.
We show how amplification works and how the classical Yule process is a part of
the quantum stochastic process.

9.1 The Quantum Stochastic Differential Equation

A quantum oscillator has the energy levels {nhν : n= 0,1,2, . . .}. A damped oscil-
lator has the property, if the oscillator is in level n, then it emits a photon and jumps
to level n− 1, then it emits a second photon and jumps to level n− 2, and so on.
After some approximations and normalizations it can be described by the QSDE

dUt0
dt

=−iba†(t)Ut0 − ib+Ut0a(t)−
1

2
b+b Ut0.

Here b and b+ are the usual oscillator operators, but we have carefully distinguished
a† which only can act to the left, in contrast to an ordinary adjoint such as b+, and
is defined by (cf. Sect. 2.4)

〈f |a†(t)= 〈a(t)f ∣∣.
Its restriction to the one-excitation case has been studied in Sect. 4.2 and in
Sect. 8.3.1.

An amplified oscillator has the property, if the oscillator is in level n, then it emits
a photon and jumps to level n+ 1, then it emits a second photon and jumps to level
n+ 2, and so on. The number of emissions per time is proportional to the number
of photons. So an avalanche is created. It can be described by the QSDE

dUt0
dt

=−ib+a†(t)Ut0 − ibUt0a(t)−
1

2
bb+Ut0.

W. von Waldenfels, A Measure Theoretical Approach to Quantum Stochastic Processes,
Lecture Notes in Physics 878, DOI 10.1007/978-3-642-45082-2_9,
© Springer-Verlag Berlin Heidelberg 2014
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The physical background has been explained in Sect. 4.2. The differential equation
studied here differs from that in Sect. 4.4 and in Sect. 8.3.3 by a scaling factor

√
2π .

The quantum stochastic differential equation has been studied by Hudson and
Ion [25]. They used another method and obtained the solution as a Bogolyubov
transform of the Heisenberg equation. More explicit is Berezin’s treatment [8]. The
amplified oscillator has a quadratic Hamiltonian and the time evolution can be cal-
culated. There is, however, the inversion of a complicated operator involved. Mandel
and Wolf [32] treat the problem with the help of a master equation. It would be nice,
to compare the different approaches.

Define

Γ ∗ = Γ ⊗ l2(N)
and, for f ∈ Γ ∗,

|f 〉 =
∞∑

m,k=0

1/(m!k!)
∫
fm,k(x1, . . . xm)a

+(dx1) · · ·a+(dxm)|∅〉 ⊗ b+k|0〉

with

fm,k ∈ L(m)= L2
s

(
R
m
)

and

‖f ‖2 =
∞∑

m,k=0

1/(m!k!)
∫

dx1 · · ·dxm
∣
∣fm,k(x1, . . . , xm)

∣
∣2 = 〈f |f 〉.

The functions in Γ ∗ can be considered as functions on R×N. Denote by Γ ∗f the
subspace consisting of finite sums in m and k. We denote by K ∗ the subspace of
those functions f , where all fm,k are continuous with compact support and where
the sum over m and k has finitely many terms.

9.2 Closed Solution

The solution can be represented by the series

Uts =
∞∑

n=0

(−i)nUtn,s

with

Utn,s =
∫
· · ·
∫

s<t1<···<tn<t
dt1 · · ·dtn

∑

ϑ1,...,ϑn

Oa

(
e−bb+(t−tn)/2bϑnaϑn(tn)
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× e−bb+(tn−tn−1)/2bϑn−1aϑn−1(tn−1) · · · e−bb+(t2−t1)/2bϑ1aϑ1(t1)

× e−bb+(t1−s)/2
)
,

where, ϑ =±1,

b+1 = b+, b−1 = b,
a+1 = a†, a−1 = a

and Oa denotes normal ordering with respect to a†, a.
We introduce ordering with respect to t , and denote it again by an ordering sym-

bol Ot . As a result of Ot a function of t1, . . . , tn becomes symmetric in t1, . . . , tn
and

∫
· · ·
∫

s<t1<···<tn<t
dt1 · · ·dtn =Ot

1

n!
∫ t

s

· · ·
∫ t

s

dt1 · · ·dtn.

Use the formula

ebb
+t/2bϑe−bb+t/2 = eϑt/2bϑ

and the time-ordering operator Ot to arrive at

Utn,s = e−bb+(t−s)/2

OtOa
1

n!
∫ t

s

· · ·
∫ t

s

dt1 · · ·dtn
∑

ϑ1,...,ϑn

eϑnt/2aϑn(tn)b
ϑn · · · eϑ1t/2aϑ1(t1)b

ϑ1 .

Consider the expression

f (t,ϑ)= eϑt/2aϑ(t)bϑ

and

F =OaOt

∑

ϑ1,...,ϑn

eϑnt/2bϑn · · · eϑ1t/2bϑ1 =OaOt

∑

ϑ1,...,ϑn

f (tn,ϑn) · · ·f (t1, ϑ1).

The operator Oa has as a consequence that the order of a, a† in expressions to
the right of it does not matter; effectively in such expressions the quantities a, a†

commute. We apply Wick’s theorem (Sect. 1.3) for the orderings with respect to t
and to ϑ . Ordering with respect to ϑ means normal ordering with respect to b+, b.
We define

C
(
t, ϑ; t ′, ϑ ′)= [f (t,ϑ), f (t ′, ϑ ′)](1{t > t ′}− 1

{
ϑ > ϑ ′

})

and consider the fact that in this context a, a† are commuting quantities, so

C
(
t, ϑ; t ′, ϑ ′)= eϑt/2+ϑ ′t ′/2aϑ(t)aϑ ′

(
t ′
)
{

1{t ′ > t} for ϑ = 1, ϑ ′ = −1,

1{t > t ′} for ϑ =−1, ϑ ′ = 1.
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Denote by P(n) the set of partitions of [1, n] into singletons and pairs. So p ∈P(n)

is of the form

p= {{u1}, . . . , {ul}, {r1, s1}, . . . , {rm, sm}
}
.

Define

Fp =OaOt

(
Oϑf (tu1, ϑu1) · · ·f (tul , ϑul )

)
Cr1,s1 · · ·Crm,sm

in which we note that

Cr,s = C(tr ,ϑr ; ts , ϑs)= Cs,r .
Then

F =OaOt

∑

ϑ1,...,ϑn

∑

p∈P(n)
Fp.

Now Fp is a function of the pairs (t1, ϑ1), . . . , (tn,ϑn) symmetric in its variables
under those permutations of 1, . . . , n, which leave p invariant. So

∑
pFp is invariant

under all permutations of (t1, ϑ1), . . . , (tn,ϑn), and Oa

∑
ϑ1,...,ϑn

∑
p∈P(n) Fp is a

symmetric function in t1, . . . , tn; we may forget about Ot . We calculate

Utn,s = e−bb+(t−s)/2Oa
1

n!
∫ t

s

· · ·
∫ t

s

dt1 · · ·dtn
∑

ϑ1,...,ϑn

∑

p∈P(n)
Fp

= e−bb+(t−s)/2Oa
∑

l+2m=n

1

l!2mm!
∫ t

s

· · ·
∫ t

s

dt1 · · ·dtl

×
∑

ϑ1,...,ϑl

Oϑ

(
f (t1, ϑ1) · · ·f (tl, ϑl)

)(∫ t

s

∫ t

s

dt1dt2
∑

ϑ1,ϑ2

C12

)m

= e−bb+(t−s)/2Oa
∑

l1+l2+2m=n

1

l1!l2!m!g(1)
l1g(−1)l2Dm

with

g(1)=
∫ t

s

dt1f (t1 − s,1)=
∫ t

s

dt1e(t1−s)/2a†(t1)b
+,

g(−1)=
∫ t

s

dt1f (t1,−1)=
∫ t

s

dt1e−(t1−s)/2a(t1)b,

D = 1

2
Oa

∫ t

s

∫ t

s

dt1dt2
∑

ϑ1,ϑ2

C12 =
∫∫

s<t1<t2<t

dt1dt2 et1/2−t2/2a†(t1)a(t2).

Explicitly

Utn,s = e−bb+(t−s)/2
∑

l1+l2+2m=n

1

l1!l2!m!
(∫ t

s

dt1e(t1−s)/2a†(t1)b
+
)l1
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×Oa

((∫∫

s<t1<t2<t

dt1dt2et1/2−t2/2a†(t1)a(t2)

)m)

×
(∫ t

s

dt1e−(t1−s)/2a(t1)b
)l2
.

Using again the formula

ebb
+t/2bϑe−bb+t/2 = eϑt/2bϑ

we obtain

Utn,s =
∑

l1+l2+2m=n

1

l1!l2!m!
(∫ t

s

dt1e−(t−t1)/2a†(t1)b
+
)l1

e−bb+(t−s)/2

×Oa

((∫∫

s<t1<t2<t

dt1dt2et1/2−t2/2a†(t1)a(t2)

)m)

×
(∫ t

s

dt1e−(t1−s)/2a(t1)b
)l2
.

If f ∈ Γ ∗f , f ≥ 0 then b+lU tn,sb+k|f 〉 and b+l (U tn,s)+b+k|f 〉 can be considered
as Borel functions ≥ 0 on R×N which are symmetric on R. We set

Y ts =
∞∑

n=0

Utn,s,

(
Y ts
)+ =

∞∑

n=0

(
Utn,s

)+
.

The functions b+lY ts b+k|f 〉 and b+l(U ts )+b+k|f 〉 are defined, are symmetric and
≥ 0, and they have possibly the value∞. We obtain

Proposition 9.2.1

Y ts = exp

(∫ t

s

dt1e−(t−t1)/2a†(t1)b
+
)

e−bb+(t−s)/2

×Oa

(
exp

(∫∫

s<t1<t2<t

dt1dt2et1/2−t2/2a†(t1)a(t2)

))

× exp

(∫ t

s

dt1e−(t1−s)/2a(t1)b
)

and

(
Y ts
)+ = exp

(∫ t

s

dt1e−(t1−s)/2a†(t1)b
+
)

e−bb+(t−s)/2
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×Oa

(
exp

(∫∫

s<t1<t2<t

dt1dt2et1/2−t2/2a†(t2)a(t1)

))

× exp

(∫ t

s

dt1e−(t−t1)/2a(t1)b
)
.

We want to show that b+lY ts b+k|f 〉 and b+l (Y ts )+b+k|f 〉 are in Γ ∗, and to give
estimates for their norms. We start with some lemmata.

Lemma 9.2.1 Consider two pairs of quantum oscillators with the usual operators
a, a+ and b, b+ and

T = exp
(
sa+b+

)
,

with s ∈C and |s|2 < 1.
Then

〈0|ambnT +bkb+kT a+mb+n|0〉 =m!(n+ k)!2F1
(
m+ 1, n+ k + 1,1, |s|2)

where 2F1 is the Gauss hypergeometric function (see [5]).

Proof We calculate

〈0|ambnesabbkb+kesa+b+a+mb+n|0〉

=
∞∑

l1,l2=0

1

l1!l2! s
l1sl2〈0|am+l1(a+)l2+m|0〉〈0|bn+l1+k(b+)l2+n+k|0〉

=
∑

l

1

(l!)2 |s|
2l (m+ l)!(n+ l + k)!.

We use Pochhammer’s symbol

(a)0 = 1, (a)p = a(a + 1) · · · (a + p− 1)

and obtain

〈0|ambnesabbkb+kesa+b+a+mb+n|0〉 =m!(m+ k)!
∞∑

l=0

(m+ 1)l(n+ k + 1)l
(l!)2 |s|2l .

�

Lemma 9.2.2 We have

〈0|ambnT +bkb+kT a+mb+n|0〉 ≤ (k +m+ n)!(1− |s|2)−(k+m+n+1)
.

This estimate is optimal.
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Proof We have

(m+ l)!(n+ l + k)!
(l!)2 = (l + 1) · · · (m+ l)(l + 1) · · · (n+ k + l)

≤ (l + 1) · · · (l +m)(l +m+ 1) · · · (l +m+ n+ k)

= (l +m+ n+ k)!
l! .

For 0≤ x < 1, we have

∞∑

l=0

(k +m+ n+ 1)l
l! xl = (1− x)−(k+m+n+1).

This estimate is optimal, as using Theorem 2.1.3 in Askey’s book [5] we have

lim
x→1−0

2F1(m+ 1, n+ k + 1,1;x)(1− x)2m+k+1 = Γ (1)Γ (m+ n+ k + 1)

Γ (m+ 1)Γ (n+ k + 1)

= (m+ n+ k)!
m!(n+ k)! . �

Lemma 9.2.3 Assume given a Lebesgue square-integrable K : R2 → C and con-
sider the operator

L=Oa exp

(∫
K(s, t)a+(ds)a(t)dt

)

=
∞∑

l=0

(1/l!)
∫
· · ·
∫
K(s1, t1) · · ·K(sl, tl)a+(ds1)a+(dsl)a(t1) · · ·a(tl)dt1 · · ·dtl .

Then L maps L2
s (R

n) into itself, and, for f ∈ L2
s (R

n), we have

‖Lf ‖ ≤ (1+ ‖K‖HS
)l‖f ‖,

where

‖K‖HS =
(∫∫

ds dt
∣∣K(s, t)

∣∣2
)1/2

is the Hilbert-Schmidt norm of the operator defined by K .

Proof We have for f,g ∈ L2
s (R

n) in easily understandable notation

〈f |L|g〉 =
n∑

l=0

1

l!
1

n!2
∫
f (x[1,n])K(s[1,l], t[1,l])g(y[1,l])m
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with

m= 〈a(x[1,n])a+(ds[1,l])a(t[1,l])a+(dy[1,n])
〉
dx[1,n]ds[1,l].

Using Wick’s theorem

m=
∑

I⊂[1,n],#I=l

∑

J⊂[1,n],#J=l

∑

ϕ:[1,l]�I

∑

ψ :[1,l]�J

∑

ϕ:I c�J c

m(ϕ,ψ,χ)

(where � denotes a bijective mapping) and

m(ϕ,ψ,χ)=
∏

i∈[1,l]

(
ε(xϕ(i),dsi)

)
dxϕ(i)

∏

i∈[1,l]

(
ε(ti ,dyψ(i))

)
dti

×
∏

i∈I c

(
ε(xi,dyχ(i))

)
dxi.

Hence

F(ϕ,ψ,χ)=
∫
f (x[1,n])K(s[1,l], t[1,l])g(y[1,l])m(ϕ,ψ,χ)

=
∫∫

ds[1,l]dt[1,l]K(s[1,l], t[1,l])

×
∫

dx[1,n]\I f
(
(sϕ−1(i))i∈I , x[1,n]\I

)
g
(
(tψ−1(i))i∈J , xχ−1(i)

)
i∈[1,n]\I .

By the Cauchy-Schwarz inequality
∣
∣F(ϕ,ψ,χ)

∣
∣2

≤
∫∫

ds[1,l]dt[1,l]
∣
∣K(s[1,l], t[1,l])

∣
∣2

×
∫

ds[1,l]dt[1,l]
∣∣∣∣

∫
dx[1,n]\I f

(
(sϕ−1(i))i∈I , x[1,n]\I

)

× g((tψ−1(i))i∈J , xχ−1(i)

)
i∈[1,n]\I

∣
∣∣∣

2

≤ ‖K‖2l
HS(n!)2‖f ‖2

Γ ‖g‖2
Γ .

Finally

∣∣〈f |L|g〉∣∣≤
n∑

l=0

1

l!
1

n!
(
n(n− 1) · · · (n− l + 1)

)2
(n− l)!‖K‖lHS‖f ‖Γ ‖g‖Γ

=
n∑

l=0

(
n

l

)
‖K‖lHS‖f ‖Γ ‖g‖Γ .

From there one obtains the result. �
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Use the notation, for f ∈ L(m),

a+(f )= 1

m!
∫
a+(dx1) · · ·a+(dxm)f (x1, . . . , xm)

and

|f 〉 = a+(f )|∅〉 ⊗ |0〉
where |∅〉 is the vacuum of the heat bath and |0〉 is the ground state of the oscillator.

Lemma 9.2.4 If ϕ ∈ L1(R) and f ∈ L2
s (R

m), then

ea(ϕ)bb+n|f 〉 ∈
⊕

l

(
L2
s

(
R
m−l)⊗ b+(n−l)|0〉)

and

∥
∥ea(ϕ)bb+n|f 〉∥∥2 ≤ n!‖f ‖2

2F1
(−m,−n,1; ‖ϕ‖2),

where the Gauss hypergeometric function 2F1(−m,−n,1; ‖ϕ‖2) is a finite polyno-
mial in ‖ϕ‖2 with coefficients ≥ 0.

Proof We calculate

∥∥ea(ϕ)bb+n|f 〉∥∥2 = 〈f |bnea
+(ϕ)bea(ϕ)bb+n|f 〉

=
∑

l

(1/l!)2〈f |a(ϕ)la+(ϕ)l |f 〉〈0|bnb+lblb+n|0〉

≤
∑

l

(1/l!)2m(m− 1) · · · (m− l + 1)‖ϕ‖2l‖f ‖2

× (n(n− 1) · · · (n− l + 1)
)2
(n− l)!

=
∑

l

(1/l!)2(−m)l(−n)l‖ϕ‖2ln!‖f ‖2

= n!‖f ‖2
2F1
(−m,−n,1; ‖ϕ‖2). �

Proposition 9.2.2 We have for f ∈ L(m) with f ≥ 0 the estimates

∥∥b+lY ts b+k|f 〉
∥∥≤ C(t − s;m, l, k)‖f ‖,

∥∥b+l
(
Y ts
)+
b+k|f 〉∥∥≤ C(t − s;m, l, k)‖f ‖
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with

C(t − s;m, l, k)= e(l+m+k+1)(t−s)/2
(
m∑

j=0

(j + k + l)!/j !
)1/2

× (1+√t − s)m√2F1(−m,−k,1;1)
√
k!).

Proof Use the notation

ϕ(t1)= 1{s < t1 < t}e−(t−t1)/2,
ψ(t1)= 1{s < t1 < t}e−(t1−s)/2,

K(t1, t2)= 1{s < t1 < t2 < t}e−(t2−t1)/2.
Then

Y ts = ea
+(ϕ)b+e−bb+(t−s)/2Oae

∫∫
dt1dt2K(t1,t2)a†(t1)a(t2)ea(ψ)b,

(
Y ts
)+ = ea

+(ψ)b+e−bb+(t−s)/2Oae
∫∫

dt1dt2K(t1,t2)a†(t2)a(t1)ea(ϕ)b.

We have

‖ϕ‖ = ‖ψ‖ =
√

1− e−(t−s).

Putting a = a(ϕ)/‖ϕ‖ or a(ϕ)= ‖ϕ‖a, Lemma 9.2.2 yields

〈0|a(ϕ)mbnea(ϕ)bbkb+kea+(ϕ)b+a+(ϕ)mb+n|0〉
≤ (k +m+ n)!(1− e−(t−s)

)me(k+m+n+1)(t−s). (i)

We recall the equation, holding for two Hilbert spaces V1,V2 and a bounded
linear mapping A : V1 → V2,

(
ker(A)

)⊥ = image
(
A+
)
.

Here ker(A) = {v1 ∈ V1 : Av1 = 0}, ⊥ denotes the orthogonal complement of A,
and A+ is the adjoint of A.

Consider the annihilation operator a(ϕ) : L(n)→ L(n− 1) with ϕ ∈ L(1). The
adjoint of a(ϕ) is a+(ϕ) : L(n− 1)→ L(n). We split L(n) into the orthogonal sum

L(n)= a+(ϕ)L(n− 1)⊕ ker
(
a(ϕ)

)
, f = a+(ϕ)gn + fn

with gn ∈ L(n− 1) and afn = 0. We continue and see

a+(ϕ)gn =
(
a+(ϕ)

)2
gn−1 + a+(ϕ)fn−1

and finally obtain

f = fn + a+(ϕ)fn−1 + · · · +
(
a+(ϕ)

)n
f0
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with fi ∈ L(i) and a(ϕ)fi = 0.
We have

〈(
a+(ϕ)

)i
fn−i |

(
a+(ϕ)

)j
fn−j

〉= δi,j j !‖ϕ‖2j‖fn−j‖2

and

‖f ‖2 =
n∑

j=0

j !‖ϕ‖2j‖fn−j‖2.

We calculate
∥∥(b+

)kea
+(ϕ)b+a+(ϕ)j b+lfn−j

∥∥2

= 〈fn−j |bla(ϕ)j ea(ϕ)bbk
(
b+
)kea

+(ϕ)b+a+(ϕ)j b+l |fn−j 〉.
As a+(fn−j ) commutes with a(ϕ) we obtain

= ‖fn−j‖2〈0|bla(ϕ)j ea(ϕ)bbk(b+)kea+(ϕ)b+a+(ϕ)j b+l |0〉 = ‖fn−j‖2c2
j

and by equation (i)

c2
j =
∥∥(b+

)kea
+(ϕ)b+a+(ϕ)j b+l |0〉∥∥2 ≤ ‖ϕ‖2j (j + l + k)!e(k+j+l+1)(t−s)

and, for f ∈ L(n),
∥∥(b+

)kea
+(ϕ)b+b+l |f 〉∥∥

≤
n∑

j=0

∥∥(b+
)kea

+(ϕ)b+a+(ϕ)j b+l |fn−j 〉
∥∥

=
n∑

j=0

cj‖fn−j‖ ≤
(∑ c2

j

j !‖ϕ‖2j

)1/2(∑
j !‖ϕ‖2j‖fn−j‖2

)1/2

and finally

∥
∥(b+

)kea
+(ϕ)b+b+l |f 〉∥∥≤

(
n∑

j=0

(j + l + k)!
j ! e(k+j+l+1)(t−s)

)1/2

‖f ‖. (ii)

The expression

Oa

(
exp

(∫∫

s<r1<r2<t

a+(r1)er1/2a(r2)e−r2/2dr1dr2

))

is of the form considered in Lemma 9.2.3 with

K(r1, r2)= 1{s < r1 < r2 < t}e−(r2−r1)/2
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and

‖K‖HS =
(∫∫

ds dtK(s, t)2
)1/2

≤√t − s.

It defines a mapping L(m)→ L(m) with the operator norm
∥∥∥
∥Oa

(
exp

(∫∫

s<r1<r2<t

a+(r1)er1/2a(r2)e−r2/2dr1dr2

))∥∥∥
∥≤ (1+

√
t − s)m.

(iii)

The operator norm

∥
∥e−bb+(t−s)/2

∥
∥
Γ ∗ ≤ 1. (iv)

For f ∈ L(m)

ea(ψ)b)b+n|f 〉 ∈
m⊕

l=0

L(m)⊗ bn−l |0〉

and by Lemma 9.2.4

∥∥ea(ψ)b)b+n|f 〉∥∥≤√2F1(−m,−n,1;1)n!‖f ‖. (v)

By combining equations (i) to (v) we obtain the result for Y ts . For (Y ts )
+ all goes the

same way. �

A consequence of the last proposition is the following theorem.

Theorem 9.2.1 We have the explicit formulae

Uts =
∞∑

n=0

(−i)nUtn,s

= exp

(
−i
∫ t

s

e−(t−t1)/2a+(t1)dt1b+
)

exp
(−bb+(t − s)/2)

×Oa

(
exp

(
−
∫∫

s<r1<r2<t

a+(r1)er1/2a(r2)e−r2/2dr1dr2

))

× exp

(
−i
∫ t

s

a(t1)e
−(t1−s)/2dt1b

)
,

(
Uts
)+ =

∞∑

n=0

in
(
Utn,s

)+

= exp

(
i
∫ t

s

dt1e−(t1−s)/2a+(t1)b+
)

e−bb+(t−s)/2
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×Oa

(
exp

(
−
∫∫

s<t1<t2<t

dt1dt2et1/2−t2/2a+(t2)a(t1)
))

× exp

(
i
∫ t

s

dt1e−(t−t1)/2a(t1)b
)
.

The sums
∑∞
n=0(−i)nUtn,sb

+k|f 〉 and
∑∞
n=0 in(Utn,s)

+b+k|f 〉 converge in norm for
fixed f ∈ L2

s (R
m) and k.

Lemma 9.2.5 For f ∈ L2
s (R

m), as t ↓ s

∞∑

n=1

∥∥Utn,sb
+k|f 〉∥∥ ↓ 0.

Proof Recall

Utn,s =
∫
· · ·
∫

s<t1<···<tn<t
dt1 · · ·dtn

∑

ϑ1,...,ϑn

Oa

(
e−bb+(t−tn/2)bϑnaϑn(tn)

× e−bb+(tn−tn−1)/2bϑn−1aϑn−1(tn−1) · · · e−bb+(t2−t1)/2bϑ1aϑ1(t1)

× e−bb+(t1−s)/2
)
.

Hence, for f ∈ L2
s (R

m),

∥∥Utn,sb
+k|f 〉∥∥≤

∑

ϑ1,...,ϑn

∥∥bϑn · · ·bϑ1b+k|0〉∥∥

×
∫
· · ·
∫

s<t1<···<tn<t
dt1 · · ·dtn

∥∥Oaaϑn(tn) · · ·aϑ1(t1)|f 〉
∥∥

≤
∑

ϑ1,...,ϑn

√
(k + 1) · · · (k + n)(t − s)

n

n!
√
(m+ 1) · · · (m+ n)‖f ‖

≤ 2n
(l + 1)n
n! (t − s)n‖f ‖

for l =max (k,m). Hence, if t − s < 1/2, for t ↓ s,

∞∑

n=1

∥∥Utn,sb
+k|f 〉∥∥≤ ((1− 2(t − s))−l−1 − 1

)‖f ‖ ↓ 0.
�
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9.3 The Unitary Evolution

Recall

Utn,s =
∫
· · ·
∫

s<t1<···<tn<t
dt1 · · ·dtn

∑

ϑ1,...,ϑn

Oa

(
e−bb+(t−tn/2)bϑnaϑn(tn)

e−bb+(tn−tn−1)/2bϑn−1aϑn−1(tn−1) · · · e−bb+(t2−t1)/2bϑ1aϑ1(t1)e
−bb+(t1−s)/2)

=
∫
· · ·
∫

s<t1<···<tn<t
dt1 · · ·dtnOa

(
e−bb+(t−tn/2)

(
b+a†(tn)+ ba(tn)

)

× e−bb+(tn−tn−1)/2

(
b+a†(tn−1)+ ba(tn−1)

) · · · e−bb+(t2−t1)/2(b+a†(t1)+ ba(t1)
)

× e−bb+(t1−s)/2
)
.

Then

(
Utn,s

)+ =
∫
· · ·
∫

s<t1<···<tn<t
dt1 · · ·dtnOa

(
e−bb+(t1−s)

(
b+a†(t1)+ ba(t1)

)

× e−bb+(t2−t1)/2
(
b+a†(t2)+ ba(t2)

) · · · e−bb+(tn−tn−1)/2
(
b+a†(tn)+ ba(tn)

)

× e−bb+(t−tn)/2
)
.

We go back to the measure-theoretic formulation and write

Utn,s =
∫ (
utn,s
)
(σ, τ )a+σ aτλτ ,

(
Utn,s

)+ =
∫ (
ũtn,s
)
(σ, τ )a+σ aτλτ

with

(
utn,s
)
(σ, τ )= 1

{
tσ + tτ ⊂ ]s, t[

}
1{#σ + #τ = n}

e−bb+/2(t−tn)bϑne−bb+/2(tn−tn−1)bϑn−1 · · ·bϑ2e−bb+/2(t2−t1)bϑ1

e−bb+/2(t1−s)

and

(
ũtn,s
)
(σ, τ )= (utn,s

)+
(σ, τ )= 1

{
tσ + tτ ⊂ ]s, t[

}
1{#σ + #τ = n}
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e−bb+/2(t1−s)bϑ1e−bb+/2(t2−t1)bϑ2 · · ·bϑn−1e−bb+/2(tn−1−tn)bϑn

e−bb+/2(t−tn)

under the assumptions, that {s, t, tσ , tτ }• contains no multiple points and

{s, t, tσ , tτ } = {s < t1 < · · ·< tn−1 < tn < t}
and ϑi = 1 if ti ∈ tσ and ϑi =−1 if ti ∈ tτ .

Make the two definitions

uts =
∞∑

n=0

(−i)nutn,s ,

ũts =
∞∑

n=0

inũtn,s .

We want to apply Ito’s theorem, and observe that 〈0|blutsb+k|0〉 and
〈0|bl(uts)+b+k|0〉 are C 1 functions with values in R.

For our purposes we have to adapt Ito’s theorem. Assume we have two matrix-
valued functions

F = (Fkl), G= (Gkl), k, l = 0,1,2, . . . :R2 →R,

where all the matrix elements are Lebesgue measurable. Define the measure

m(π,σ1, τ1, σ2, τ2, ρ)=
〈
aπa

+
σ1
aτ1a

+
σ2
aτ2a

+
ρ

〉
λπ+τ1+τ2

and the matrix-valued sesquilinear form

f,g ∈Ks(R)→〈f |B(F,G)|g〉 = 〈f |(B(F,G))
kl
|g〉,

〈f |B(F,G)kl |g〉 =
∫

m
∑

m

1/m!f (π)Fkm(σ1, τ1)Gml(σ2, τ2)g(ρ),

provided the integral combined with the sum converges absolutely.

Theorem 9.3.1 Assume xt and yt to be matrix-valued functions, where all their ma-
trix elements of class C 1, and that, for f,g ∈Ks(R,R), all the sesquilinear forms
〈f |B(Ft ,Gt )|g〉 exist so that t ∈R �→ 〈f |B(Ft ,Gt )|g〉 is locally integrable, where
Ft is any function drawn from {xt , ∂cxt ,R1±xt ,R−1± xt }, and similarlyGt is any func-

tion drawn from {yt , ∂cyt ,R1±yt ,R−1± yt }. Then t �→ 〈f |(B(xt , yt ))kl |g〉 is contin-
uous and has as Schwartz derivative a locally integrable function. The Schwartz
derivative is

∂〈f |B(xt , yt )|g〉 = 〈f |B
(
∂cxt , yt

)+B
(
f, ∂cyt

)+ I−1,+1,t |g〉
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+ 〈a(t)f ∣∣B(D1xt , yt
)+B

(
f,D1yt

)|g〉
+ 〈f |B(D−1xt , yt

)+B
(
f,D−1yt

)∣∣a(t)g
〉

with

I−1,1,t =B
(
R−1+ xt ,R1+yt

)−B
(
R−1− xt ,R1−yt

)
.

We recall the operators ∂c and Ri±, from Sect. 6.3, and the following properties
of them that will be useful in our calculations:

Lemma 9.3.1 With ∂c and Ri± acting on the upper index t of uts we have

∂ct u
t
s(σ, τ )=−bb+/2uts(σ, τ ),

(
R1+u·s

)
t
(σ, τ )= ut+0

s (tσ + t, tτ )=−ib+uts(σ, τ ),
(
R1−u·s

)
t
(σ, τ )= ut−0

s (tσ + t, tτ )= 0,
(
R−1+ u·s

)
t
(σ, τ )= ut+0

s (tσ , tτ + t)=−ibuts(σ, τ ),
(
R−1− u·s

)
t
(σ, τ )= ut−0

s (tσ , tτ + t)= 0;
and acting on the lower index s of uts

∂cs u
t
s(σ, τ )= uts(σ, τ )

(
bb+/2

)
,

(
R1+ut·

)
s
(σ, τ )= uts+0(tσ + s, tτ )= 0,

(
R1−ut·

)
s
(σ, τ )= uts−0(tσ + s, tτ )= uts

(−ib+
)
,

(
R−1+ ut·

)
s
(σ, τ )= uts+0(tσ , tτ + s)= 0,

(
R−1− ut·

)
s
(σ, τ )= uts−0(tσ , tτ + s)= uts(σ, τ )(−ib);

then acting on the upper t index of ũts , we have

∂ct
(
ũts
)
(σ, τ )= ũts (σ, τ )

(−bb+/2),
(
R1+ũ·s

)
t
(σ, τ )= ũt+0

s (tσ + t, tτ )= ũts(σ, τ )ib+,
(
R1−ũ·s

)
t
(σ, τ )= ũt−0

s (tσ + t, tτ )= 0,
(
R−1+ ũ·s

)
t
(σ, τ )= ũt+0

s (tσ , tτ + t)= ũts (σ, τ )ib,
(
R−1− ũ·s

)
t
(σ, τ )= ũt−0

s (tσ , tτ + t)= 0;
and, finally, acting on the index s of ũts

∂cs ũ
t
s(σ, τ )=

(
bb+/2

)
ũts (σ, τ )

(
bb+/2

)
,
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(
R1+ũt·

)
s
(σ, τ )= ũts+0(tσ + s, tτ )= 0,

(
R1−ũt·

)
s
(σ, τ )= ũts−0(tσ + s, tτ )= ib+uts,

(
R−1+ ũt·

)
s
(σ, τ )= ũts+0(tσ , tτ + s)= 0,

(
R−1− ũt·

)
s
(σ, τ )= ũts−0(tσ , tτ + s)= ibũts(σ, τ ).

Theorem 9.3.2 There exist uniquely determined operators Û ts on Γ ∗, whose re-
strictions to K ∗ coincide with Uts . We shall write Uts instead of Û ts and use the
notation

Uts =
(
Ust
)+

for t < s.

We have

UtrU
r
s =Uts for s, t, r ∈R.

The Uts form a strongly continuous unitary evolution on Γ ∗.

Proof We want to apply Ito’s theorem to

(
uts
)
kl
= 〈0|bkutsb+l |0〉,

(
uts
)+
kl
= 〈0|bl(uts

)+
b+k|0〉.

We have to show, e.g., that we have a well-defined

B
((
uts
)+
, uts
)
.

But this relation, and the other relations needed for the application of Ito’s theorem,
follow directly from Proposition 9.2.2 and Theorem 9.3.1.

We obtain with the help of Lemma 9.3.1

∂rB
(
utr , u

r
s

)= 0,

hence

(
B
(
utr , u

r
s

))
kl
= (B(uts, uss

))
kl
= (B(uts, e(∅,∅)

))
kl

=
∫ (
uts
)
kl
(σ, τ )a+σ aτλτ =B

(
uts
)
kl
,

and so

Uts =
(
Ust
)+ for t < s.

In the same way,

∂tB
((
uts
)+
, uts
)= 0
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and

∂sB
(
uts,
(
uts
)+)= 0,

giving
(
B
((
uts
)+
, uts
))
kl
= (B(uts,

(
uts
)+))

kl
= δkl .

Therefore the mappings Uts and (Uts )
+ have the property that, for f,g ∈ Γ ∗f ,

〈f |(Uts
)+
Uts |g〉 = 〈f |Uts

(
Uts
)+|g〉 = 〈f |g〉,

so Uts and (Uts )
+ are the restrictions of unitary operators from Γ ∗f to Γ ∗. These

unitary operators we denote again by Uts and (Uts )
+. We have, for s < r < t ,

UtrU
r
s =Uts .

If we put for s > t

Uts =
(
Ust
)+
,

the relation UtrU
r
s =Uts holds for all s, t, r ∈R.

The strong continuity follows from Lemma 9.2.5. �

9.4 Heisenberg Equation

Lemma 9.4.1 We have, for s < t ,

∂t
((
Uts
)+
b+Uts

)= 1

2

(
Uts
)+
b+Uts + ia(t),

and

∂s
(
Uts b

+(Uts
)+)=−1

2
Uts b

+(Uts
)+ + ia(s).

Hence

(
Ut0
)+
b+Ut0 = et/2b+ + i

∫ t

0
e(t−s)/2a(s)ds

and

lim
t→∞ e−t/2

(
Ut0
)+
b+Ut0 = b+ + i

∫ ∞

0
e−s/2a(s)ds.

Proof We want to calculate (Uts )b
+Uts . Define

m=m(π,σ1, τ1, σ2, τ2, ρ)=
〈
aπa

+
σ1
aτ1a

+
σ2
aτ2a

+
ρ

〉
λπ+τ1+τ2 .
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For f,g ∈Ks(R), we have

〈f |((Uts
)
b+Uts

)
kl
|g〉 =

∫
mf (π)〈0|bk(uts

)+
(σ1, τ1)b

+uts(σ2, τ2)b
+l |0〉g(ρ).

With the help of Ito’s theorem, we obtain

∂t

∫
mf (π)

((
uts
)+
(σ1, τ1)b

+uts(σ2, τ2)ibb
+uts(σ2, τ2)b

+)
kl
g(ρ)

=
∫
f (π)〈0|bk(uts

)+
(σ1, τ1)

× (m(−b(b+)2/2− b+bb+/2+ b(b+)2)

+ a†(t)m
(
i
(
b+
)2 − i

(
b+
)2)+ma(t)

(
ibb+ − ib+b

))
uts(σ2, τ2)b

+l |0〉g(ρ)

=
∫
f (π)〈0|bk(uts

)+
(σ1, τ1)

(
mb+/2+ ima(t)

)
uts(σ2, τ2)b

+l |0〉g(ρ)

or

∂t
(
Uts
)+
b+Uts =

(
Uts
)+
b+Uts /2+ ia(t).

Integrate the differential equation and obtain

(
Uts
)+
b+Uts = e(t−s)/2b+ + i

∫ t

s

e(r−s)/2a(r)dr.

The second equation of the lemma is obtained in the same way.
One calculates

lim
t→∞ e−t/2

(
Ut0
)+
b+Ut0 = b+ + i

∫ ∞

0
e−s/2a(s)ds. �

Lemma 9.4.2 For s, t ∈R

(
Uts
)+
b+Uts = e|t−s|/2

(
b+ + i

∫ t

s

ds′e−|s′−s|/2a
(
s′
))
.

Proof Integrate the differential equations, and obtain for s < t

(
Uts
)+
b+Uts = e(t−s)/2b+ + i

∫ t

s

e(t−s′)/2a
(
s′
)
ds′

= e(t−s)/2
(
b+ + i

∫ t

s

e(s−s′)/2a
(
s′
)
ds′
)
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and

Uts b
+Ut+s = e(t−s)/2b+ − i

∫ t

s

ds′e(s′−s)/2a
(
s′
)

= e(t−s)/2
(
b+ − i

∫ t

s

ds′e(s′−t)/2a
(
s′
)
ds′
)
,

and for s > t , upon interchanging the roles of s and t in the last equation,

(
Uts
)+
b+Uts = e(s−t)/2

(
b+ − i

∫ s

t

e(s
′−s)/2a

(
s′
)
ds′
)

= e|t−s|/2
(
b+ + i

∫ t

s

ds′e−|s′−s|/2a
(
s′
))
. �

Lemma 9.4.3 For r �= s, t
[
ar,U

t
s

]= 1[s,t](r)Utr
(−ib+

)
Urs ,

and
[
Uts , a

+(dr)
]= 1[s,t](r)Utr (−ib)Urs dr.

Proof Recall from Sect. 9.3 that

Uts =
∑
(−i)nUtn,s ,

and

Utn,s =
∫

σ,τ

utn,s(σ, τ )a
+
σ aτλτ

and also that utn,s(σ, τ )= 0 for #σ + #τ �= n. Calculate, for s �= 0, t ,

[
ar ,U

t
n,s

]=
∫

σ,τ

[
ar , a

+
σ aτ

]
utn,s(σ, τ )λτ =

∫

σ,τ

∑

c∈σ
a+σ\caτ ε(r, tc)u

t
n,s(σ, τ )λτ

=
∫

σ,τ,c

1[s,t](tc)utn,s(σ + c, τ )ε(r, tc)a+σ aτλτ .

Assume s < r < t , and introduce

N(tσ+τ )=
{

1 if {tσ+τ , s, r, t}• has a multiple point,

0 otherwise.

As N(tσ+τ ) is a null function, we have, for f,g ∈K ∗,



9.4 Heisenberg Equation 199

〈f |[ar ,Utn,s
]|g〉

=
∫ (

1−N(tσ+τ )
)
f (π)utn,s(σ + c, τ )ε(r, tc)g(ρ)

〈
aπa

+
σ aτ a

+
ρ

〉
λπ+τ

=
∫ (

1−N(tσ+τ )
)
f (π)utn,s

(
tσ + {r}, tτ

)
g(ρ)

〈
aπa

+
σ aτ a

+
ρ

〉
λπ+τ .

Since

utn,s
(
tσ + {r}, tτ

)=
∑

n1+n2=n
σ1+σ2=σ
τ1+τ2=τ

utn2,r
(σ2, τ2)

(−ib+
)
urn1,s

(σ1, τ1)

we can continue the reckoning with

=
∑

n1+n2=n

∫ (
1−N(tσ1+τ1+σ2+τ2)

)
f (π)utn2,r

(σ2, τ2)
(−ib+

)
urn1,s

(σ1, τ1)g(ρ)

× 〈aπa+σ2
a+σ1
aτ2aτ1a

+
ρ

〉
λπ+τ1+τ2

=
∑

n1+n2=n

∫
f (π)utn2,r

(σ2, τ2)
(−ib+

)
urn1,s

(σ1, τ1)g(ρ)

× 〈aπa+σ2
aτ2a

+
σ1
aτ1a

+
ρ

〉
λπ+τ1+τ2

as the integrals over all commutators of aτ2 and a+σ1
vanish (see Lemma 8.5.1) and

N is again a null function. Finally we have

〈f |[ar ,Utn,s
]|g〉 =

∑

n1+n2=n
〈f |Utn,r

(−ib+
)
Urn2,s

|g〉.

By the results of Sect. 9.2 the sum over n converges, and we obtain the first equation
of the lemma. The second equation is obtained in a similar way. �

We can use the commutator identities to give formulas for the adjoint action of
Uts on a and a+ like those above for b and b+.

Lemma 9.4.4 For r �= s, t with t > s

(
Uts
)+
a(r)Uts = a(r)+ 1[s,t](r)

(
Urs
)+(−ib+

)
Urs

and

Uts a
+(dr)

(
Uts
)+ = a+(dr)+ 1[s,t](r)Utr (−ib)

(
Utr
)
dr.

With a type of matrix notation we now put all the equations for the adjoint action
together in a succinct form. The index s′ in the proposition below carries with it an
implicit integration over s′.
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Proposition 9.4.1 We have

(
Ut0
)+
(
b+

a(s)

)
Ut0 =

(
V00 (V01)s′
V10 (V11)ss′

)(
b+

a(s′)

)

with

V00 = et/2,

(V01)s′ = i1
{
0< s′ < t

}
e(t−s′)/2δ

(
s − s′),

V10 =−i1{0< s < t}es/2,
(V11)ss′ = δ

(
s − s′)+ 1

{
0< s′ < s < t

}
e(s−s′)/2.

Furthermore

(
Ut0
)+
(

b

a+(ds)

)
Ut0 =

(
Ṽ00 (Ṽ01)s′
Ṽ10 (Ṽ11)ss′

)(
b

a+(ds′)

)

with

Ṽ00 = et/2,

(Ṽ01)s′ = −i1
{
0< s′ < t

}
e(t−s′)/2δ

(
s − s′),

Ṽ10 = i1{0< s < t}es/2,
(Ṽ11)ss′ = δ

(
s − s′)+ 1

{
0< s′ < s < t

}
e(s−s′)/2.

Ṽ can be represented as the solution of a quantum stochastic differential equa-
tion. This equation differs from that in Sect. 4.3 and Sect. 8.3.3 by a scaling factor
of
√

2π .

Proposition 9.4.2 Define

N =
∫
a+(ds)a(s)=

∫
dsa†(s)a(s);

then N − bb+ is an integral of motion, i.e.,
(
Ut0
)+(
N − bb+)Ut0 =N − bb+.

Proof For an operator A use the abbreviation

At = (Ut0
)+
AUt0.

Then

(
bb+

)t = bb+ +
∫ t

0

(
ds

1

2
bs − ia+(ds)

)(
b+
)s +

∫ t

0
ds bs

(
1

2

(
b+
)s + ia(s)

)
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and

Nt =
∫ (
a+(ds)+ ibs1{0< s < t}ds)(a(s)− i

(
b+
)s1{0< s < t})

=N + i
∫ t

0
ds bsa(s)− i

∫ t

0
a+(ds)

(
b+
)s +

∫ t

0
ds
(
bb+

)s
. �

Remark 9.4.1 One obtains in the same way, for s < t ,

(
Uts
)+
b+Uts = e(t−s)/2b+ + i

∫ t

s

e(t−s′)/2a
(
s′
)
ds′

and
(
Uts
)+(
N − bb+)Uts =N − bb+.

Definition 9.4.1 Denote by Γ ∗k the subspace of Γ ∗ consisting of those functions
f ∈ Γ ∗ for which

‖f ‖Γ ∗k = 〈f |
(
N + bb+)k|f 〉<∞.

In the definition, we use (N + bb+), the total number of excitations, because we
want an upper bound on functions, and (N − bb+) leaves things invariant. We need
the following theorem only for even k, and formulate it for simplicity just for that
case.

Theorem 9.4.1 The operators Uts , for s, t ∈ R, map each Γ ∗k for k = 0,2,4, . . .
into itself, and there exist constants Ck such that for f ∈ Γ ∗k and s, t ∈R,

∥∥Uts f
∥∥
Γ ∗k
≤ Ckek|t−s|‖f ‖Γ ∗k .

Proof With the notation

M =N + bb+,
we have

(
Uts
)+
MUts =

(
Uts
)+(2bb+ +N − bb+)Uts

= (Uts
)+(2bb+

)
Ust +N − bb+ = e|t−s|A(s, t).

Define

f (s, t)
(
s′
)= sign(t − s) i1[s,t]

(
s′
)
e−|s−s′|/2

(
1− e−|t−s|

)−1/2
.

Then
∫

ds′
∣∣f (s, t)

(
s′
)∣∣2 = 1,
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and we consider

A(s, t)= (b+ (1− e−|s−t |
)1/2)

a+
(
f (s, t)

)(
b+ + (1− e−|s−t |

)1/2)
a
(
f (s, t)

)

+ e−|s−t |
(
N − bb+).

The operator A(s, t) maps K ∗ into itself, and we calculate for g ∈K ∗,

g =
∑
b+k|gk,m〉,

the norm

∥∥Ml−1a+(f )b+M−lg
∥∥2
Γ ∗

=
∑

k,m

∥∥Ml−1a+(f )b+M−lbk|gk,m〉
∥∥2
Γ ∗

≤
∑
(k +m+ 3)2(l−1)(k + 1)(m+ 1)(k +m+ 1)−2l

∥∥bk|gk,m〉
∥∥2
Γ ∗

≤
∑(

(k +m+ 3)/(k +m+ 1)
)2l∥∥bk|gk,m〉

∥∥2
Γ ∗ ≤ 32l‖g‖2

Γ ∗ .

We have

∥∥Ml−1a(f )b+M−lg
∥∥2
Γ ∗

=
∑

k,m

∥∥Ml−1a+(f )b+M−lbk|gk,m〉
∥∥2
Γ ∗

≤
∑
(k +m+ 1)2(l−1)k(m+ 1)(k +m+ 1)−2l

∥∥bk|gk,m〉
∥∥2
Γ ∗

≤
∑∥∥bk|gk,m〉

∥∥2
Γ ∗ ≤ ‖g‖2

Γ ∗ .

Similar inequalities hold if one replaces a(f )b+ by a+(f )b, or by a(f )b, or by
N − bb+. Hence

∥∥Ml−1A(s, t)M−lg
∥∥
Γ ∗ ≤

(
4+ 3l

)‖g‖2
Γ ∗ .

One obtains

AkM−kg =AM−1M1AM−2M2AM−3 · · ·Mk−1AM−kg,

so
∥∥AkM−kg

∥∥
Γ ∗ ≤ (4+ 3)

(
4+ 32) · · · (4+ 3k

)‖g‖Γ ∗ = Ck‖g‖Γ ∗ .
Hence

M−kA2kM−k ≤ C2
k1Γ +
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or

A2k ≤M2kC2
k .

From there follows the result as K ∗ is dense in Γ ∗. �

9.5 The Hamiltonian

We use the same notation and results as in Sects. 8.8.1 and 8.8.2. Define for t ∈R

W(t)=Θ(t)Ut0 =U0−tΘ(t);
then W(t) is a unitary strongly continuous one-parameter group on Γ ∗. An imme-
diate consequence of Theorem 9.4.1 is

Proposition 9.5.1 The operatorsW(t) map the space Γ ∗k into itself and there exist
constants Ck such that

∥∥W(t)f
∥∥2
Γ ∗k
≤ Ckek|t |‖f ‖2

ΓK
.

We shall use the notations and results of Sect. 8.8.3.

Definition 9.5.1 For z ∈C, Im z �= 0, we define the resolvent R(z) by

R(z)=
{−i

∫∞
0 eiztW(t)dt for Im z > 0,

i
∫ 0
−∞ eiztW(t)dt for Im z < 0.

Furthermore we set

S(z)=
{−i

∫∞
0 eiztW(t)a(t) for Im z > 0,

i
∫ 0
−∞ eiztW(t)a(t) for Im z < 0

and

κ(z)(t)=
{−i1{t > 0}eizt−tbb+/2 for Im z > 0,

i1{t < 0}eizt+tbb+/2 for Im z < 0

and

R̃(z)=Θ(κ(z))=
{−i

∫∞
0 eizte−tbb+/2Θ(t)d t for Im z > 0,

+i
∫ 0
−∞ eiztetbb

+/2Θ(t)d t for Im z < 0.

Taking into account the a priori estimate Proposition 9.2.2, one proves, as in
Sect. 8.8.3, with a and a+ defined as in Sect. 8.8.2,
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Proposition 9.5.2 We have for f ∈K ∗

R(z)f = R̃(z)(f + bS(z)f + a
+b+R(z)f

)
.

Corollary 9.5.1 If f ∈K ∗, then

R(z)f = R̃(z)(f0 + a
+b+f1

)

with

f0 = f + S(z)f
and

f1 =R(z)f.

Again using the a priori estimate Proposition 9.2.2, the same arguments as in
Proposition 8.8.8 establish the following proposition:

Proposition 9.5.3 For f ∈K ∗ we have

âR(z)= S(z)− i(1/2)b+R(z).

Definition 9.5.2 The vector space D̂ ⊂ Γ ∗ is defined by

D̂ = {f = R̃(z)(f0 + a
+b+f1

) : f0 ∈ Γ ∗2 , f1 ∈ Γ ∗4
}
.

We have the following consequence of Corollary 9.5.1:

Proposition 9.5.4 Recall the constants Ck of Proposition 9.5.1; then for | Im z|>
C4 the operator R(z) maps K ∗ into D̂.

We make at first an Ansatz for the Hamiltonian H . Recall Sect. 8.8.3 and the
space D̂† of all semilinear functionals D̂ → C. We have in an analogous way
to 8.8.3

D̂ ⊂ Γ ∗ ⊂ D̂†.

Definition 9.5.3 Define an operator D̂→ D̂† by

Ĥ = i∂̂ + a
+b+ + ab,

or, equivalently, the sesquilinear form Ĥ on D̂ given by

〈f |Ĥ |g〉 = 〈f |i∂̂|g〉 + 〈âbf |g〉 + 〈f |âbg〉.
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Proposition 9.5.5 The operator Ĥ exists and is symmetric. One obtains for f =
R̃(z)(f0 + a+b+f1)

Ĥf = (i∂̂ + â
+b+ + âb

)
f =−(f0 + b+â+f1

)+
(
z+ i

2
bb+

)
f + â

+b+f + âbf.

So Ĥf ∈ Γ ∗ if and only if −f1 + f = 0.

Proof An element in Γ ∗ can be represented in the form

f =
∞∑

k,m=0

1/(l!m!)b+la+(fl,m)|0〉 =
∞∑

l,m=0

1/(l!m!)b+l |fl,m〉

with fl,m ∈ L(m)= L2
s (R

m),

‖f ‖2
Γ ∗ =

∑
1/(l!m!)‖fl,m‖2

L(m)

and

‖fl,m‖2
L(m) =

∫
dt1 · · ·dtm

∣∣fl,m(t1, . . . , tm)
∣∣2.

Fix an element z ∈C with Im z �= 0, and write κ for κ(z). One has

R̃(z)f =Θ(κ)f =
∑

1/(l!m!)b+lΘ(κl)|fk,m〉

with

κl(t)=
{
−i1{t > 0}eizt−(l+1)/2 for Im z > 0,

i1{t < 0}eizt+(l+1)/2 for Im z < 0.

As κl fulfills all conditions for ϕ and η in the lemmata of Sect. 8.8.2, and ‖κl‖L2 ≤ 1,
we can sum up and obtain that Θ(κ)a+ defines a mapping Γ ∗k−1 → Γ ∗k with

∥∥Θ(κ)a+f
∥∥
k
≤ 2k/2‖f ‖k−1,

and aΘ(κ) also defines a mapping Γ ∗k−1 → Γ ∗k with

∥∥Θ(κ)a+f
∥∥
k
≤ ‖f ‖k−1.

One establishes by arguments similar to those of Sect. 8.8, that for f ∈ D̂ the ele-
ment âf is well defined. We calculate for f ∈ D̂

i∂̂f =−i limΘ
(
ϕ′n
)
f

=−i limΘ
(
ϕ′n ∗ κ

)(
f0 + b+a+f1

)=−i limΘ
(
ϕn ∗ κ ′

)(
f0 + b+a+f1

)
.
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Now

−iϕn ∗ κ ′ = −iϕn ∗
(
−iδ+

(
iz− 1

2
bb+

)
κ

)
=−ϕn + ϕn ∗

(
z+ i

2
bb+

)
κ

and

i∂̂f =−(f0 + â
+f1
)+
(
z+ i

2
bb+

)
f. �

Definition 9.5.4 Define

D0 = {f ∈ D̂ : f = f1};
denote by H0 the restriction of Ĥ to D0.

Proposition 9.5.6 For f ∈K ∗

ĤR(z)f =−f + zR(z)f
and R(z)f ∈D0.

Proof By Corollary 9.5.1 we have, for f ∈K ∗ and Im z > 4,

R(z)f = R̃(z)(f0 + a
+b+f1

)
,

f0 = f + S(z)f,
f1 =R(z)f.

With the help of Proposition 9.5.5 we obtain

Ĥf = (i∂̂ + â
+b+ + âb)f

=−(f0 + b+â+f1
)+
(
z+ i

2
bb+

)
f + â

+b+f + âbf

=−(f + bS(z)f + â
+b+R(z)f

)+
(
z+ i

2
bb+

)
R(z)f

+ â
+b+R(z)f + bS(z)f − i

2
bb+R(z)f

=−f + zR(z)f. �

Just as for Theorem 8.8.1, we obtain with the help of Proposition 3.1.9,

Theorem 9.5.1 The domain D of the Hamiltonian H ofW(t) contains D0 and the
restriction of H to D0 coincides with H0, the restriction of

Ĥ = i∂̂ + â
+b+ + âb

to D0; furthermore, D0 is dense in Γ and H is the closure of H0.
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9.6 Amplification

The amplified oscillator yields a model for a photo multiplier. Recall the Fourier-
Weyl transform. If ρ is a density operator on Γ , then the Fourier-Weyl transform is
given by

W (ρ)(ϕ, z)= Trace ρei(a(ϕ)+a+(ϕ)+zb+zb+)

for ϕ ∈K (R) and z ∈C. The time development of ρ is given by

ρ(t)=Ut0ρ
(
Ut0
)+
.

Hence

W
(
ρ(t)

)
(z,ϕ)= Traceρ exp

(
i
(
Ut0
)+(
a(ϕ)+ a+(ϕ)+ zb+ zb+)Ut0

)
.

According to Lemma 9.4.1 and Lemma 9.4.4, we have

(
Ut0
)+
b+Ut0 = et/2

(
b+ + i

∫ t

0
ds e−s/2a(s)

)
,

(
Ut0
)+
a(s)Ut0 = a(s)+ 1{0< s < t}(Us0

)+
b+Us0

= a(s)+ 1{0< s < t}es/2
(
b+ + i

∫ s

0
ds′e−s′/2

)
a
(
s′
)
,

(
Ut0
)+
a(ϕ)Ut0 =

∫
ds ϕ(s)

(
Ut0
)+
a(s)Ut0

= a(ϕ)+
∫ t

0
ds ϕ(s)es/2

(
b+ + i

∫ s

0
ds′e−s′/2a

(
s′
))
.

For t→∞

e−t/2
(
Ut0
)+
b+Ut0 → b+ + i

∫ ∞

0
ds e−s/2a(s)= b+ + a(ψ)

with

ψ(t)=−i1{t > 0}e−t/2
and

e−t/2
(
Ut0
)+
a(ϕ)Ut0 → 0,

since

e−t/2
∫ t

0
ds es/2ϕ(s)→ 0.

So

W
(
ρ(t)

)(
e−t/2z, e−t/2ϕ

)→ Trace ρeiz(b+a+(ψ))+z(b++a(ψ)).
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As
[(
b+ a+(ψ)), b+ + a(ψ)]= 0,

the last expression can be understood as the Fourier transform of a classical proba-
bility measure p on the complex plane given by

∫
p(dξ)eizξ+izξ = p̂(z)= Trace ρeiz(b+a+(ψ))+z(b++a(ψ)).

So p may be understood as an amplification of ρ.

Examples

• Assume ρ = ρ0 ⊗ |∅〉〈∅|, where ρ0 is the initial density matrix of the oscillator
and |∅〉 is the ground state of the heat bath,

p̂(z)= e−|z|2/2Traceρ0ei(zb+zb+) = e−|z|2/2ρ̂0(z),

p(dξ)= (2/π)
∫

Wigner(ρ0)(η)e
−2|ξ−η|2 dηdξ,

where Wigner(ρ0) is the Wigner transform of ρ0. So p is the Wigner transform
of ρ0 smeared out with a Gaussian distribution.

• Assume ρ = |0〉〈0| ⊗ |∅〉〈∅|, the ground state of both oscillator and heat bath;
then

p(dξ)= (1/π)e−|ξ |2 dξ.

• Assume a coherent state ρ0 = |ψ〉〈ψ |

ψ = e−|β|2/2eβb
+|0〉,

then

p(dξ)= (1/π)e−|ξ−β|2 dξ,

the translated probability measure for the vacuum. So we recover β with an addi-
tional uncertainty.

9.7 The Classical Yule-Markov Process

The Yule process is a pure birth process. Individuals live forever. For each indi-
vidual living at time t , during the period from t to t + dt there is a chance equal
dt of having a child. Thus each individual gives birth at rate 1. The state space is
N0 = {0,1,2, . . .}. If Z(t) is the random number of individuals at time t , then the
conditional probability

pm,l(t − s)= P
{
Z(t)=m|Z(s)= l}
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obeys the differential equation

dpm+1,l(t − s)
dt

=−(m+ 1)pm+1,l(t − s)+mpm,l(t − s).

Hence

pm+1,l(t − s)=
∫
· · ·
∫

s<s1<···<sm−l<t
ds1 · · ·dsm−l

× e−(t−sm−l )(m+1)me−(sm−l−sm−l−1)m(m− 1) · · ·
× e(s2−s1)(l+1)(l + 1)e−(l+1)(s1−s).

For the following discussion it is convenient to introduce the vectors

ηm =
√

1/m! b+m|0〉.
They form an orthonormal basis of L2(R) and

〈ηl |ηm〉 = δlm,
b+ηm =

√
m+ 1ηm+1,

bηm =√mηm−1.

Consider

Uts ηlΦ =
∑

j,m

(1/j !)ηm
∫
fjm(s1, . . . , sj )a

+(ds1) · · ·a+(dsj )Φ,

where Φ is the vacuum state of the heat bath, and note that m= l + j , so we have

fjm(s1, . . . , sj )= 〈ηm|uts
({s1, . . . , sj },∅

)|ηl〉
= (−i)j

〈
ηm|e−bb+(t−sj )/2b+ · · ·b+e−bb+(s2−s1)/2b+e−(s1−s)ηl

〉

= (−i)j e−(m+1)(t−sj )/2√m · · ·√l + 2e−(l+2)(s2−s1)/2

×√l + 1e−(l+1)(s1−s)/2.

Now look at the coefficient of ηm. We have

∥∥
∥∥(1/j !)

∫
fjm(s1, . . . , sj )a

+(ds1) · · ·a+(dsj )Φ
∥∥
∥∥

2

Γ

= (1/j !)
∫

ds1 · · ·dsj
∣∣fjm(s1, . . . , sj )

∣∣2

=
∫

s<s1<···<sj<t
ds1 · · ·dsj

∣∣〈ηm|uts
({s1, . . . , sj },∅

)
ηl
〉∣∣2 = pl,m(t − s).
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Consider ηn = ηn ⊗ id and η+n = η+n ⊗ id as operators, and define

Xn = ηnη+n ,
Xn(t)=

(
Ut0
)+
XnU

t
0 =U0

t XnU
t
0.

Lemma 9.7.1 Write Φ = id⊗Φ for short, then for s < t

〈Φ|Ust XmUts |Φ〉 =
∑

l

pm,l(t − s)Xl

where 〈Φ| stands for 〈Φ| ⊗ id, and |Φ〉 = id⊗ |Φ〉.

Proof We have

〈Φ ⊗ ηn|Ust XmUts |ηl ⊗Φ〉 = 〈Φ ⊗ ηn|
(
Uts
)+
η+mηmUts |ηl ⊗Φ〉

and

ηmU
t
s |ηl ⊗Φ〉 =

∫

σ

〈ηm|uts(σ,∅)|ηl〉a+σ Φ.
Hence

〈Φ⊗ηn|Ust XmUts |ηl⊗Φ〉 =
∫

σ,τ

〈ηm|uts(τ,∅)|ηn〉〈ηm|uts(σ,∅)|ηl〉〈Φ|aτ a+σ |Φ〉λτ .

We have #σ = #τ = m− n = m− l, hence l = n, unless the expression vanishes.
We continue with

=
∫

σ

λσ
∣∣〈ηm|uts(σ,∅)|ηl〉

∣∣2|ηl〉〈ηl |δln = pm,l(t − s)δln. �

Theorem 9.7.1 If ρ0 is a density matrix on l2, and 0< t1 < · · ·< tp , then

Tr
((
ρ0 ⊗ |Φ〉〈Φ|Xm′1(t1) · · ·Xm′p−1

(tp−1)
)
Xmp(tp)Xmp−1(tp−1) · · ·Xm1(t1)

)

= δm1,m
′
1
· · · δmp−1,m

′
p−1

Pπ

{
Z(t1)=m1, . . . ,Z(tp)=mp

}

=
∑

l

δm1,m
′
1
· · · δmp−1,m

′
p−1
pmp,mp−1(tp − tp−1) · · ·pm2,m1(t2 − t1)pm1,l(t1)πl

where π is the initial distribution of the Yule process,

πl = P
{
Z(0)= l}= 〈ηl |ρ0|ηl〉.

Proof We carry out the proof by induction over p. For p = 1, we have

Tr
(
ρ0 ⊗ |Φ〉〈Φ|Xm(t)

)= Tr
(
ρ0〈Φ|U0

t XmU
t
0|Φ〉

)
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= Trρ0

(∑
pm,l(t)Xl

)

=
∑
pm,l(t)Trρ0Xl =

∑
πlpm,l(t).

We calculate

Tr
((
ρ0 ⊗ |Φ〉〈Φ|Xm′1(t1) · · ·Xm′p−1

(tp−1)
)
Xmp(tp)Xmp−1(tp−1) · · ·Xm1(t1)

)

= Tr ρ0〈Φ|U0
t1
Xm1U

t1
t2
· · ·Utp−2

tp−1
Xm′p−1

U
tp−1
tp

XmpU
tp
tp−1

· · ·Ut2t1Xm1U
t1
0 |Φ〉

=
∫

Tr ρ0
(
u0
t1
(∅, τ1)Xm1u

t1
t2
(∅, τ2) · · ·utp−2

tp−1
(∅, τp−1)Xm′p−1

u
tp−1
tp
(∅, τp)

×Xmputptp−1
(σp,∅) · · ·ut2t1(σ2,∅)Xm1u

t1
0 (σ1,∅)

)

× 〈Φ|aτ1+···+τpa+σ1+···+σp |Φ〉λτ1+···+τp .
Here, for t < s, we have

Ust =
∫
ust (σ, τ )a

+
σ aτλτ

and

ust (σ, τ )=
(
uts
)+
(σ, τ )= (uts(τ, σ )

)+
.

As tτ1+···+τp−1 ⊂ [0, tp−1] and tτp ⊂ [tp−1, tp], and tσ1+···+σp−1 ⊂ [0, tp−1] and
tσp ⊂ [tp−1, tp], we may, under the integral, replace (see Lemma 8.5.1)

〈Φ|aτ1+···+τpa+σ1+···+σp |Φ〉λτ1+···+τp
by

〈Φ|aτ1+···+τp−1a
+
σ1+···+σp−1

|Φ〉λτ1+···+τp−1〈Φ|aτpa+σp |Φ〉λτp .
We split the integral, and perform first the integral over the second factor to obtain

∫
u
tp−1
tp
(∅, τp)Xmputptp−1

(σp,∅)〈Φ|aτpa+σp |Φ〉λτp

= 〈Φ|Utp−1
tp

XmpU
tp
tp−1
|Φ〉 =

∑

l

Xlpmp,l(tp − tp−1).

We insert this result into the integral and obtain

=
∑

l

pmp,l(tp − tp−1)

∫
Trρ0

(
u0
t1
(∅, τ1)Xm1u

t1
t2
(∅, τ2) · · ·utp−2

tp−1
(∅, τp−1)

Xm′p−1
XlXmp−1u

tp−1
tp−2
(σp−1,∅) · · ·ut2t1(σ2,∅)Xm1u

t1
0 (σ1,∅)

)
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〈Φ|aτ1+···+τp−1a
+
σ1+···+σp−1

|Φ〉λτ1+···+τp−1 .

Using

Xm′p−1
XlXmp−1 = δmp,m′p−1

δmp−1,lXmp−1

one finishes the proof. �

Corollary 9.7.1 We have by the result above, that for t1 < · · ·< tp
∥∥Xmp(tp) · · ·Xm1(t1)|ηl ⊗Φ〉

∥∥2
Γ
= Pl

{
Z(tp)=mp, . . . ,Z(t1)=m1

}
,

where Pl is the probability distribution of the Yule process starting at l at time 0.



Chapter 10
Approximation by Coloured Noise

Abstract We show that the Hudson-Parthasarathy equation can be approximated
by coloured noise using the singular coupling limit.

10.1 Definition of the Singular Coupling Limit

We recall the Hudson-Parthasarathy quantum stochastic differential equation
(QSDE)

∂tU(t)=A1a
†(t)U(t)+A0a

†(t)U(t)a(t)+A−1U(t)a(t)+BU(t),
U(0)= 1

where Ai (i =−1,0,1) and B are in B(k). Assuming that U(t) is a power series in
a and a+, we write

∂tU(t)= :K(t)U(t):
K(t)=A1a

†(t)+A0a
†(t)a(t)+A−1a(t)+B,

where :· · ·: stands for normal ordering, and is also denoted by Oa · · · . This is Ac-
cardi’s normal ordered form of the QSDE. The solution was given by an infinite
series in Sect. 8.2:

U(t)= 1+
∞∑

n=1

∫
· · ·
∫

0<t1<···<tn<t
dt1 · · ·dtn:K(tn) · · ·K(tn):.

Recall

K =Ks(R, k).

If f,g ∈K , then 〈f |U(t)|g〉 is well defined, as the infinite sum on the right-hand
side contains only finitely many terms.

Quantum white noise is called “white”, because the correlation function

〈∅|a(s)a+(dt)|∅〉 = εs(dt),
W. von Waldenfels, A Measure Theoretical Approach to Quantum Stochastic Processes,
Lecture Notes in Physics 878, DOI 10.1007/978-3-642-45082-2_10,
© Springer-Verlag Berlin Heidelberg 2014
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or, again introducing a+(dt)= a†(t)dt ,

〈∅|a(s)a†(t)|∅〉 = δ(t − s)
and the δ-function has a white spectrum, i.e., its Fourier transform is constant.
“Coloured” noise means, that the spectrum of the correlation function is not white.
We will understand by coloured noise that we make the replacements

a(t)⇒ a
(
ϕt
)
,

a†(t)⇒ a+
(
ϕt
)
,

a+(dt)⇒ a+
(
ϕt
)
dt,

where ϕ is a complex-valued continuous function on the real line, and

ϕt (s)= ϕ(s − t).
Then we define

a
(
ϕt
)=
∫

dsϕt (s)a(s),

a+(ϕt )=
∫

dsϕt (s)a†(s)=
∫

dsϕt (s)a+(ds).

So

a
(
ϕt
) :K →K ,

(
a
(
ϕt
)
f
)
(t1, . . . , tn)=

∫
dt ϕt (t0)f (t0, t1, . . . , tn)

a+
(
ϕt
) :K →K ,

(
a+
(
ϕt
)
f
)
(t1, . . . , tn)= ϕt (t1)f (t2, . . . , tn)+ · · ·

+ ϕt (tn)f (t1, . . . , tn−1).

The quantities a(ϕt ) and a+(ϕt ) are called coloured noise operators. The correla-
tion function is

〈∅|a(ϕs)a+(ϕt)|∅〉 =
∫

dr ϕ(r − t)ϕ(r − s)= k(t − s)

and its Fourier transform is
∫

dt eiωtk(t)=
∣∣∣
∣

∫
dt ϕ(t)eiωt

∣∣∣
∣

2

,

a function vanishing at ∞.
We want to perform the singular coupling limit limit already used in Chap. 4,

and put

ϕtε(s)=
1

ε
ϕ

(
s − t
ε

)
.
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For ε ↓ 0, one obtains

ϕtε(s)→ γ δt (s)= γ δ(s − t),
a
(
ϕtε
)→ γ a(δt )= γ a(t),

a+
(
ϕtε
)→ γ a+(δt )= γ a+(t),

γ =
∫
ϕ(s)ds.

Their correlation functions are

〈∅|a(ϕsε
)
a+
(
ϕtε
)|∅〉 = kε(t − s),

kε(t − s)=
∫

dr ϕtε(r)ϕ
s
ε(r)dr = kε(t − s),

kε(t − s)= 1

ε
k

(
t − s
ε

)
→
(∫

dr k(r)

)
δ(t − s),

∫
dr k(r)= |γ |2.

10.2 Approximation of the Hudson-Parthasarathy Equation

We investigate for ε ↓ 0 the solution of the differential equation

∂tUε(t)=Hε(t)Uε(t),
Uε(0)= 1,

Hε(t)=M1a
+(ϕtε

)+M0a
+(ϕtε

)
a
(
ϕtε
)+M−1a

(
ϕtε
)
.

Theorem 10.2.1 Assume

‖M0‖
∫

dt
∣∣ϕ(t)

∣∣2/2< 1.

Then for ε ↓ 0 and f,g ∈K ,

〈f |Uε(t)|g〉→ 〈f |U(t)|g〉

such that U(t) satisfies a QSDE with right-hand side K(t) of standard form, which
can be explicitly give as

∂tU(t)= :K(t)U(t):, K(t)=A1a
†(t)+A0a

†(t)a(t)+A−1a(t)+B
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with

A1 = γ

1− κM0
M1, A0 = |γ |2M0

1− κM0
, A−1 =M−1

γ

1− κM0
,

B =M−1
κ

1− κM0
M1

and

γ =
∫

dt ϕ(t), κ =
∫ ∞

0
k(t)dt =

∫ ∞

0
dt
∫

ds ϕ(s − t)ϕ(s).

We use a trick common in quantum field theory and introduce artificial time
dependence in the Mi , and so we writeMi(t) instead ofMi . Then we define

Hε(t)=M1(t)a
+(ϕtε

)+M0(t)a
+(ϕtε

)
a
(
ϕtε
)+M−1(t)a

(
ϕtε
)
.

Lemma 10.2.1 Assume tn > · · ·> t1, then

Hε(tn) · · ·Hε(t1)=
∑

{I1,...,Im}∈Pn

Ot :L(I1) · · ·L(Im):.

We denote by Pn the set of all partitions of [1, n]. We put

L
({t1}

)=Hε(t1),
and, for l ≥ 2,

L
({t1, . . . , tl}

)

= (M0(tl) · · ·M0(t2)M1(t1)a
+(ϕtlε

)+M0(tl) · · ·M0(t1)a
+(ϕtlε

)
a
(
ϕt1ε
)

+M−1(tl)M0(tl−1) · · ·M0(t1)a
(
ϕt1ε
)+M−1(tl)M0(tl−1) · · ·M0(t2)M1(t1)

)

× kε(tl − tl−1) · · ·kε(t2 − t1).
Ot is the time-ordering operator for theMi and the k(tj − ti), i.e., all monomials in
Mi are ordered in such a way that the first factor is dependent on tn and so on down
to the last one on t1, and similarly k(ti − tj ) becomes k(tmax (i,j) − tmin (i,j)).

Proof We perform the proof by induction. The case n = 1 is clear. We proceed
from n − 1 to n. For simplicity we drop the indices ε and write a(ϕ

tj
ε ) = aj and

a+(ϕtjε ) = a+j . Remark, that the ai and a+j inside normal ordering :· · ·: commute.
Then

H(tn)H(tn−1) · · ·H(t1)
= (M1(tn)a

+
n +M0(tn)a

+
n an +M−1(tn)an

) ∑

{J1,...,Jp}∈Pn−1

Ot :L(J1) · · ·L(Jp):
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=Ot

∑

{J1,...,Jp}∈Pn−1

(:(M1(tn)a
+
n +M0(tn)a

+
n an +M−1(tn)an

)
L(J1) · · ·L(Jp):

+ (M0(tn)a
+
n +M−1(tn)

)[
an, :L(J1) · · ·L(Jp):

])

=Ot

∑

{J1,...,Jp}∈Pn−1

(

:L({n})L(J1) · · ·L(Jp):

+ (M0(tn)a
+
n +M−1(tn)

)

×
p∑

j=1

:L(J1) · · ·L(Jj−1)
[
an,L(Jj )

]
L(Jj+1) · · ·L(Jp):

)

.

Now
(
M0(tn)a

+
n +M−1(tn)

)[
an,L

({t1, . . . , tl}
)]

= (M0(tn)a
+
n +M−1(tn)

)(
M0(tl) · · ·M0(t2)M1(t1)

+M0(tl) · · ·M0(t2)M0(t1)a1
)
k(tn − tl)k(tl − tl−1) · · ·k(t2 − t1)

= L({tn, tl, . . . , t1}
)
.

So

H(tn)H(tn−1) · · ·H(t1)

=Ot

∑

{J1,...,Jp}∈Pn−1

(

:L({n})L(J1) · · ·L(Jp)

+
p∑

j=1

L(J1) · · ·L(Jj−1)L
(
Jj + {n}

)
L(Jj+1) · · ·L(Jp):

)

.

As any partition of [1, n] contains either n as a singleton, or is contained in an
element of a partition of [1, n− 1], one obtains the result. �

Lemma 10.2.2 Write, for I ⊂ [1, n], #I = l,

P(I)(t)= 1

l!Ot
∫ t

0
dt1 · · ·dtl L(I )(tl , . . . , t1)

then, if #Ii = ni ,
∫

0<t1<···<tn<t
dt1 · · ·dtn Hε(tn) · · ·Hε(t1)

=
∑

{I1,...,Ip}∈Pn

n1! · · ·np!
n! Ot :P(Ip)(t) · · ·P(I1)(t):.
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Proof As
∑

{I1,...,Ip}∈Pn

Ot :L(I1) · · ·L(Ip): =
∑

{I1,...,Ip}∈Pn

Ot :
(
Ot

(
L(I1)

) · · ·Ot
(
L(Ip)

)):

is symmetric in t1, . . . , tn we obtain
∫

0<t1<···<tn<t
dt1 · · ·dtn Hε(tn) · · ·Hε(t1)

= 1

n!
∫ t

0
· · ·
∫ t

0
dt1 · · ·dtnOt

∑

{I1,...,Ip}∈Pn

:Ot
(
L(I1)

) · · ·Ot
(
L(Im)

):.
�

We split partitions as

P=P
′
n +P

′′
n,

where P′n is the set of non-overlapping partitions, and P′′n is the set of overlapping
partitions.

Lemma 10.2.3 We have
∫

0<t1<···<tn<t

∑

{I1,...,Ip}∈P′
n

:L(I1) · · ·L(Ip):

=
∑

n1+···+np=n

∫

0<s1<···<sp<t
ds1 · · ·dsp :Fnp(sp, sp−1)

× Fnp−1(sp−1, sp−2) · · ·Fn1(s1,0):
with

Fl(s, r)=
∫

r<t1<···<tl−1<s

dt1 · · ·dtl−1L
({s, tl−1, . . . , t1}

)
.

Proof If {I1, . . . , Ip} ∈P′n, then it is of the form

I1 = [1, n1], . . . , Ip = [n1 + · · · + np−1, n1 + · · ·np = n].
Put

t1 = t11, . . . , tn1−1 = t1,n1−1, tn1 = s1,
tn1+1 = t2,1, . . . , tn1+n2−1 = t2,n2−1, tn1+n2 = s2,

...

tn1+···+np−1+1 = tp,1, . . . , tn−1 = tp,np−1, tn = sp,
and obtain the result. �
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Lemma 10.2.4 Assume, that the Mi are independent of the ti , then for ε ↓ 0
∫

0<t1<···<tn<t

∑

{I1,...,Ip}∈P′
n

:L(I1) · · ·L(Ip):

→
∑

n1+···+np=n

∫

0<s1<···<sp<t
ds1 · · ·dsp :Gnp(sp)Gnp−1(sp−1) · · ·Gn1(s1):

with

Gl(s)= κl−1(Ml−1
0 M1γ a

+(s)+Ml
0|γ |2a+(s)a(s)

+M−1M
l−1
0 γ a(s)+M−1M

l−2
0 M11{l ≥ 2})

and

γ =
∫

dt ϕ(t), κ =
∫ ∞

0
k(t)dt =

∫ ∞

0
dt
∫

ds ϕ(s − t)ϕ(s).

Proof

Fl(s, r)=
∫

r<t1<···<tl−1<s

dt1 · · ·dtl−1L
({s, tl−1, . . . , t1}

)

=
∫

r<t1<···<tl−1<s

dt1 · · ·dtl−1
(
Ml−1

0 M1a
+(ϕsε

)+Ml
0a
+(ϕsε

)
a
(
ϕt1ε
)

+Ml−1
−1 a

(
ϕt1ε
)

+M−1M
l−2
0 M11{l ≥ 2})kε(s − tl−1)kε(tl−1 − tl−2) · · · kε(t2 − t1).

This converges for ε ↓ 0 to

Gl(s)= κl−1(Ml−1
0 M1γ a

+(s)+Ml
0|γ |2a+(s)a(s)

+M−1M
l−1
0 γ a(s)+M−1M

l−2
0 M11{l ≥ 2}). �

Lemma 10.2.5 For ε ↓ 0, the contribution of the overlapping intervals converges
∫

0<t1<···<tn<t

∑

{I1,...,Ip}∈P′′
n

:L(I1) · · ·L(Ip): → 0.

Proof We obtain an upper estimate if we replace Mi by ‖Mi‖ and ϕ by |ϕ|. In
order to simplify the notation, let us assume that the Mi ≥ 0 and ϕ ≥ 0. We have
γ ≥ 0, and κ = γ 2/2. In Lemma 10.2.1 we need the operators Ot only to arrange
the Mi . As the Mi commute, we may forget the Ot and can assume that the Mi are
independent of t . We put, for #I = l,

Pl(t)= P(I)(t).
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Then
∫

0<t1<···<tn<t
dt1 · · ·dtn Hε(tn) · · ·Hε(t1)

=
∑

(n1,...,np):n1+···+np=n

1

p! :Pnp(t) · · ·Pn1(t):

since the number of partitions of n into subsets of n1, . . . , np elements is

n!
p!n1! · · ·np! .

Going back to Lemma 10.2.2, we observe that

Pl(t)=
∫

0<t1<···tl<t
dt1 · · ·dtl L(t1, . . . , tl)→

∫ t

0
ds Gl(s)

and
∫

0<t1<···<tn<t
dt1 · · ·dtn Hε(tn) · · ·Hε(t1)

=
∫

0<t1<···<tn<t
dt1 · · ·dtn

∑

{I1,...,Ip}∈Pn

:L(I1) · · ·L(Im):

=
∑

(n1,...,np):n1+···+np=n

1

p! :Pn1(t) · · ·Pnp(t):

→ 1

p!
∑

n1+···+np=n
:
∫ t

0
dspGnp(sp)

∫ t

0
dsp−1Gnp−1(sp−1) · · ·

∫ t

0
dt1Gn1(s1):.

Hence
∫

0<t1<···<tn<t

∑

{I1,...,Ip}∈P′′
n

:L(I1) · · ·L(Ip):

=
∫

0<t1<···<tn<t

∑

{I1,...,Ip}∈Pn

:L(I1) · · ·L(Ip):

−
∫

0<t1<···<tn<t

∑

{I1,...,Ip}∈P′
n

:L(I1) · · ·L(Ip):

→ 0. �
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Proof of the theorem We have the iterative solution

Uε(t)= 1+
∞∑

n=1

∫

0<t1<···<tn<t
dt1 · · ·dtn Hε(tn) · · ·Hε(t1).

We go back to Lemma 10.2.2, and assume thatMi ≥ 0 and ϕ ≥ 0. Then

〈f |Uε(t)|g〉 = 〈f |1+
∞∑

n=1

∑

ni≥1:n1+···+np=n

1

p! :Pn1(t) · · ·Pnp(t):|g〉

= 〈f |1+
∞∑

p=1

1

p! :P(t)
p:|g〉

with

P(t)=
∞∑

l=1

Pl(t)=
∞∑

l=1

1

l!
∫ t

0
dt1 · · ·dtl L(t1, . . . , tl)

=
∞∑

l=1

∫

0<t1<···tl<t
(
Ml−1

0 M1a
+(ϕtlε

)+Ml
0a
+(ϕtlε

)
a
(
ϕt1ε
)

+M−1M
l−1
0 a

(
ϕt1ε
)+M−1M

l−2
0 1{l ≥ 2}M1

)

× kε(tl − tl−1) · · ·kε(t2 − t1).
Recall

γ =
∫

dtϕ(t), κ =
∫ ∞

0
k(t)dt =

∫ ∞

0
dt
∫

ds ϕ(s − t)ϕ(s).

As we assumed ϕ ≥ 0, we have γ ≥ 0 and κ = γ 2/2. Assume f and g are two
continuous functions of compact support with 0≤ f,g ≤ 1, and denote by e(f ) the
function

e(f ) :R→C,
(
e(f )

)
(t1, . . . , tn)= f (t1) · · ·f (tn).

Then

〈
e(f )

∣
∣Uε(t)

∣
∣e(g)

〉= e〈f |g〉
(

1+
∞∑

p=0

Pfg(t)
p

)

where Pfg(t) arises from P(t) by replacing a+(ϕtε) by 〈f,ϕtε〉 and a(ϕtε) by 〈ϕtε|g〉.
So

Pfg(t)=
∞∑

l=1

∫

0<t1<···tl<t
(
Ml−1

0 M1
〈
f |ϕtlε

〉+Ml
0

〈
f |ϕtlε

〉〈
ϕt1ε |g

〉+M−1M
l−1
0

〈
ϕt1ε |g

〉
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+M−1M
l−2
0 1{l ≥ 2}M1

)
kε(tl − tl−1) · · ·kε(t2 − t1)

≤ t
∞∑

l=1

κl−1(γMl−1
0 M1 + γ 2Ml

0 + γM−1M
l−1
0 +M−1M

l−2
0 1{l ≥ 2}M1

)

= t 1

1− κM0

(
γM1 + γ 2M0 + γM−1M

l−1
0 + κM−1M1

)
.

So for κM0 =M0
∫

dt ϕ(t)2/2< 1,

〈
e(f )

∣∣Uε(t)
∣∣e(g)

〉
<∞.

Remark that any continuous function ≥ 0 with compact support on R can be ma-
jorized by a function of the type e(f ).

We proceed now to the general case. Consider for f,g ∈ K , the expression
〈f |Uε(t)|g〉. It can be majorized by replacing Mi by ‖Mi‖, and ϕ by |ϕ|, f by
‖f ‖ and g by ‖g‖. The preceding discussion implies that, for

‖M0‖
∫

dt
∣∣ϕ(t)

∣∣2/2< 1,

we may take ε ↓ 0 behind the sum and the integrals and obtain, by Lemmata 10.2.4
and 10.2.2,

〈f |Uε(t)|g〉 = 〈f |1+
∞∑

n=1

∑

ni≥0,n1+···+np=n

∫

0<s1<···<sp<t
ds1 · · ·dsp

× :Knp(sp)Knp−1(sp−1) · · ·Kn1(s1):|g〉

=
∞∑

p=0

〈f |
∫

0<s1<···<sp<t
ds1 · · ·dsp :K(sp)K(sp−1) · · ·K(s1):|g〉

with

K(s)=
∞∑

l=1

Gl(s)

=
∞∑

l=1

κl−1(Ml−1
0 M1γ a

+(s)+Ml
0|γ |2a+(s)a(s)

+M−1M
l−1
0 γ a(s)+M−1M

l−2
0 M11{l ≥ 2})

= γ

1− κM0
M1a

+(s)+ |γ |2M0

1− κM0
a+(s)a(s)+M−1

γ

1− κM0
a(s)

+M−1
κ

1− κM0
M1. �
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Remark 10.2.1 If one makes the replacements

Mi⇒−iMi,

γ ⇒ 1,

κ⇒ 1/2

one obtains the essential part of the formula in Theorem 8.8.1.

Remark 10.2.2 Similar calculations involving overlapping and non-overlapping
partitions have been performed in an old paper by P.D.F. Ion and the author [26].



References

1. L. Accardi, Noise and dissipation in quantum theory. Rev. Math. Phys. 2, 127–176 (1990)
2. L. Accardi, Y.-G. Lu, N. Obata, Towards a non-linear extension of stochastic calculus, in

Publications of the Research Institute for Mathematical Sciences, Kyoto, ed. by N. Obata.
RIMS Kôkyûroku, vol. 957 (1996), pp. 1–15

3. L. Accardi, Y.-G. Lu, I.V. Volovich, White noise approach to classical and quantum stochastic
calculus. Preprint 375, Centro Vito Volterra, Università Roma 2 (1999)

4. L. Accardi, Y.-G. Lu, I.V. Volovich, Quantum Theory and Its Stochastic Limit (Springer,
Berlin, 2002)

5. G.E. Andrews, R. Askey, D. Roy, Special Functions (Cambridge University Press, Cambridge,
1999)

6. S. Attal, Problemes d’unicité dans les représentations d’opérateurs sur l’espace de Fock, in
Séminaire de Probabilités XXVI. Lecture Notes in Math., vol. 1526 (Springer, Berlin, 1992),
pp. 617–632

7. S. Attal, Non-commutative chaotic expansions of Hilbert-Schmidt operators on Fock space.
Commun. Math. Phys. 175, 43–62 (1996)

8. F.A. Berezin, The Method of Second Quantization (Academic Press, New York, 1966)
9. N. Bourbaki, Intégration, chap. 6 (Gauthier-Villars, Paris, 1959)

10. N. Bourbaki, Intégration, chap. 1–4 (Gauthier-Villars, Paris, 1965)
11. N. Bourbaki, Intégration, chap. 5 (Gauthier-Villars, Paris, 1965)
12. N. Bourbaki, Algebra I (Springer, Berlin, 1989)
13. N. Bourbaki, Lie Groups and Lie Algebras. Chapters 1–3 (Springer, Berlin, 1989)
14. A.M. Chebotarev, Quantum stochastic differential equation is unitary equivalent to a sym-

metric boundary problem in Fock space. Infin. Dimens. Anal. Quantum Probab. 1, 175–199
(1998)

15. G.V. Efimov, W. von Waldenfels, R. Wehrse, Analytical solution of the non-discretized radia-
tive transfer equation for a slab of finite optical depth. J. Spectrosc. Radiat. Transf. 53, 59–74
(1953)

16. F. Fagnola, On quantum stochastic differential equations with unbounded coefficients. Probab.
Theory Relat. Fields 86, 501–516 (1990)

17. I. Gelfand, N. Vilenkin, Generalized Functions, vol. 1 (Academic Press, New York, 1964)
18. I. Gelfand, N. Vilenkin, Generalized Functions, vol. 4 (Academic Press, New York, 1964)
19. J. Gough, Causal structures of quantum stochastic integrators. Theor. Math. Phys. 111, 563–

575 (1997)
20. J. Gough, Noncommutative Ito and Stratonovich noise and stochastic evolution. Theor. Math.

Phys. 113(N2), 276–284 (1997)
21. M. Gregoratti, The Hamiltonian operator associated with some quantum stochastic evolutions.

Commun. Math. Phys. 222(1), 181–200 (2001)

W. von Waldenfels, A Measure Theoretical Approach to Quantum Stochastic Processes,
Lecture Notes in Physics 878, DOI 10.1007/978-3-642-45082-2,
© Springer-Verlag Berlin Heidelberg 2014

225

http://dx.doi.org/10.1007/978-3-642-45082-2


226 References

22. M. Gregoratti, The Hamiltonian associated to some quantum stochastic differential equations.
Thesis, Milano, 2000

23. H. Haken, Laser Theory. Handbuch der Physik, vol. XXV/2c (Springer, Berlin, 1970)
24. E. Hille, R.S. Phillips, Functional Analysis and Semigroups (Amer. Math. Soc., Providence,

1968)
25. R.L. Hudson, P.D.F. Ion, The Feynman-Kac formula for a canonical quantum mechanical

Wiener process, in Random Fields, Vols. I, II, Esztergom, 1979. Colloq. Math. Soc. Janos
Bolyai, vol. 27 (North Holland, Amsterdam, 1981), pp. 551–568

26. P.D.F. Ion, W. von Waldenfels, Zeitgeordnete Momente des weissen klassischen und des weis-
sen Quantenrauschens, in Probability Measures on Groups. Proceedings, Oberwolfach, 1981.
Lecture Notes in Math., vol. 928 (Springer, Berlin, 1982)

27. J.M. Jauch, M. Rohrlich, The Theory of Photons and Electrons (Springer, Berlin, 1976)
28. L.D. Landau, E.M. Lifschitz, Lehrbuch der theoretischen Physik IV. Quantenelektodynamik

(Akademie-Verlag, Berlin, 1986)
29. J.M. Lindsay, Quantum and non-causal stochastic calculus. Probab. Theory Relat. Fields 97,

65–80 (1993)
30. J.M. Lindsay, H. Maassen, An integral kernel approach to noise, in Lecture Notes in Math.,

vol. 1303 (1988), pp. 192–208
31. H. Maassen, Quantum Markov processes on Fock space described by integral kernels, in Lec-

ture Notes in Math., vol. 1136 (1985), pp. 361–374
32. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press,

Cambridge, 1995)
33. K. Matthes, J. Kerstan, J. Mecke, Infinitely Divisible Point Processes (Wiley, New York, 1978)
34. P.A. Meyer, Quantum Probability for Probabilists. Lecture Notes in Mathematics, vol. 1538

(Springer, Berlin, 1993)
35. N. Obata, White Noise Calculus and Fock Space. Lecture Notes in Mathematics, vol. 1577

(Springer, Berlin, 1994)
36. K.R. Parthasarathy, An Introduction to Quantum Stochastic Calculus (Birkhäuser, Basel,

1992)
37. L. Schwartz, Théorie des distributions I (Herrmann, Paris, 1951)
38. W. von Waldenfels, Continous Maassen kernels and the inverse oscillator, in Séminaire des

Probabilités XXX. Lecture Notes in Mathematics, vol. 1626 (Springer, Berlin, 1996)
39. W. von Waldenfels, Continuous kernel processes in quantum probability, in Quantum Proba-

bility Communications, vol. XII (World Scientific, Singapore, 2003), pp. 237–260
40. W. von Waldenfels, Description of the damped oscillator by a singular Friedrichs kernel, in

Quantum Prob. and Rel. Fields (2003)
41. W. von Waldenfels, Symmetric differentiation and Hamiltonian of a quantum stochastic pro-

cess. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8, 73–116 (2005)
42. W. von Waldenfels, The Hamiltonian of a simple pure number process, in Quantum Prob-

ability and Infinite Dimensional Analysis, vol. 18 (World Scientific, Singapore, 2005), pp.
518–525

43. W. von Waldenfels, White noise calculus and Hamiltonian of a quantum stochastic process.
arXiv:0806.3636 (2008), 72 p.

44. W. von Waldenfels, The Hamiltonian of the amplified oscillator. Arch. Math. 92, 538–548
(2009)

45. H. Weyl, Gruppentheorie und Quantenmechanik (Leipzig, 1931)

http://arxiv.org/abs/arXiv:0806.3636


Index

Symbols
A†, 38
E(1;2,3), 99
W(t), 161
Λ(1, . . . , k), 111
Θ(t), 68
〈E|, 62
B(F ), ix, 125
O(F ), 125
L∗, 64
L†, 64
ε(υ,α), 102
εx , viii
a†, 38
|E〉, 62
Γk , 145
B(F,G), 126
C 1, 117, 129

A
Accardi, 139, 213
Admissible, 105
Amplified oscillator, xiii, 88, 144

B
Berezin, ix, 180

C
Cauchy-distribution, 68
Coloured noise, x, 214

D
Damped oscillator, xi, 57, 61
Delta-function, viii
Diffusion, 97

E
Exponential function, 33
Exponential measure, 33

F
Fock space, vi, 25
Formal time, 68
Free algebra, 1

G
Gaussian functional, 11
Gelfand-Vilenkin, 74
Generalized eigenvector, 55, 73

H
Hilbert transform, 76
Hudson-Ion, 180
Hudson-Parthasarathy, 139, 152, 213
Hudson-Parthasarathy equation, xiv, 139, 213

I
Ito’s theorem, 131

K
Krein’s formula, 55

L
Lorentz-distribution, 68

M
Maassen, vi, 27
Maassen-Meyer-kernels, vi, 27
Mandel-Wolf, 180
Meyer, vi, 27, 127
Multisets, 12

W. von Waldenfels, A Measure Theoretical Approach to Quantum Stochastic Processes,
Lecture Notes in Physics 878, DOI 10.1007/978-3-642-45082-2,
© Springer-Verlag Berlin Heidelberg 2014

227

http://dx.doi.org/10.1007/978-3-642-45082-2


228 Index

N
Normal ordered, v, ix, 16, 139, 213
Number operator, ix
Number process, 144

O
Obata, vi
One-parameter group, 41

generator, 43
Hamiltonian, 44
resolvent, 42
unitary, 43

P
Point measure, viii
Polarized radiation, xi, 143
Pseudoresolvent, 39
Pure number process, xiii

Q
Quantum white noise, viii

R
Resolvent, 39

Right shift, 68
Rotating wave approximation, xi, 59

S
Schwartz derivative, 120
Semilinear, 64
Semilinear functional, 62
Singular coupling limit, x, 61, 63, 213
Spectral Schwartz distribution, 48, 71, 87, 92,

95
Sum-integral lemma, 26, 28

T
Test function, 47
Two-level atom, xi, 57, 141

V
Vague convergence, 27

W
Weyl algebra, v, 1
White noise, 213
Wick’s theorem, xiv, 5, 17, 20, 107, 181


	A Measure Theoretical Approach to Quantum Stochastic Processes
	Preface
	Contents

	Chapter 1: Weyl Algebras
	1.1 Deﬁnition of a Weyl Algebra
	1.2 The Algebraic Tensor Product
	1.3 Wick's Theorem
	1.4 Basis of a Weyl Algebra
	1.5 Gaussian Functionals
	1.6 Multisets
	1.7 Finite Sets of Creation and Annihilation Operators

	Chapter 2: Continuous Sets of Creation and Annihilation Operators
	2.1 Creation and Annihilation Operators on Fock Space
	2.2 The Sum-Integral Lemma for Measures
	2.3 Creation and Annihilation Operators on Locally Compact Spaces
	2.4 Introduction of Point Measures

	Chapter 3: One-Parameter Groups
	3.1 Resolvent and Generator
	3.2 The Spectral Schwartz Distribution

	Chapter 4: Four Explicitly Calculable One-Excitation Processes
	4.1 Krein's Formula
	4.2 A Two-Level Atom Coupled to a Heat Bath of Oscillators
	4.2.1 Discussion of the Model
	4.2.2 Singular Coupling Limit
	4.2.3 Time Evolution
	4.2.4 Replacing Frequencies by Formal Times
	4.2.5 The Eigenvalue Problem

	4.3 A Two-Level Atom Interacting with Polarized Radiation
	4.3.1 Physical Considerations
	4.3.2 Singular Coupling
	4.3.3 The Hamiltonian and the Eigenvalue Problem

	4.4 The Heisenberg Equation of the Ampliﬁed Oscillator
	4.4.1 Physical Considerations
	4.4.2 The Singular Coupling Limit, Its Hamiltonian and Eigenvalue Problem

	4.5 The Pure Number Process

	Chapter 5: White Noise Calculus
	5.1 Multiplication of Diffusions
	5.2 Multiplication of Point Measures
	5.3 White Noise Operators
	5.4 Wick's Theorem
	5.5 Representation of Unity
	5.6 Duality

	Chapter 6: Circled Integrals
	6.1 Deﬁnition
	6.2 A Circled Integral Equation
	6.3 Functions of Class C1

	Chapter 7: White Noise Integration
	7.1 Integration of Normal Ordered Monomials
	7.2 Meyer's Formula
	7.3 Quantum Stochastic Processes of Class C1: Deﬁnition and Fundamental Properties
	7.4 Ito's Theorem

	Chapter 8: The Hudson-Parthasarathy Differential Equation
	8.1 Formulation of the Equation
	8.2 Existence and Uniqueness of the Solution
	8.3 Examples
	8.3.1 A Two-Level Atom in a Heatbath of Oscillators
	8.3.2 A Two-Level Atom Interacting with Polarized Radiation
	8.3.3 The Heisenberg Equation of the Ampliﬁed Oscillator
	8.3.4 A Pure Number Process

	8.4 A Priori Estimate and Continuity at the Origin
	8.5 Consecutive Intervals in Time
	8.6 Unitarity
	8.7 Estimation of the Gammak-Norm
	8.8 The Hamiltonian
	8.8.1 Deﬁnition of the One-Parameter Group W(t)
	8.8.2 Deﬁnition of a,a+ and 
	8.8.3 Characterization of the Hamiltonian


	Chapter 9: The Ampliﬁed Oscillator
	9.1 The Quantum Stochastic Differential Equation
	9.2 Closed Solution
	9.3 The Unitary Evolution
	9.4 Heisenberg Equation
	9.5 The Hamiltonian
	9.6 Ampliﬁcation
	9.7 The Classical Yule-Markov Process

	Chapter 10: Approximation by Coloured Noise
	10.1 Deﬁnition of the Singular Coupling Limit
	10.2 Approximation of the Hudson-Parthasarathy Equation

	References
	Index

